Rechargeable magnesium-metal batteries(RMMBs)are promising next-generation secondary batteries;however,their development is inhibited by the low capacity and short cycle lifespan of cathodes.Although various strategie...Rechargeable magnesium-metal batteries(RMMBs)are promising next-generation secondary batteries;however,their development is inhibited by the low capacity and short cycle lifespan of cathodes.Although various strategies have been devised to enhance the Mg^(2+)migration kinetics and structural stability of cathodes,they fail to improve electronic conductivity,rendering the cathodes incompatible with magnesium-metal anodes.Herein,we propose a dual-defect engineering strategy,namely,the incorporation of Mg^(2+)pre-intercalation defect(P-Mgd)and oxygen defect(Od),to simultaneously improve the Mg^(2+)migration kinetics,structural stability,and electronic conductivity of the cathodes of RMMBs.Using lamellar V_(2)O_(5)·nH_(2)O as a demo cathode material,we prepare a cathode comprising Mg_(0.07)V_(2)O_(5)·1.4H_(2)O nanobelts composited with reduced graphene oxide(MVOH/rGO)with P-Mgd and Od.The Od enlarges interlayer spacing,accelerates Mg^(2+)migration kinetics,and prevents structural collapse,while the P-Mgd stabilizes the lamellar structure and increases electronic conductivity.Consequently,the MVOH/rGO cathode exhibits a high capacity of 197 mAh g^(−1),and the developed Mg foil//MVOH/rGO full cell demonstrates an incredible lifespan of 850 cycles at 0.1 A g^(−1),capable of powering a light-emitting diode.The proposed dual-defect engineering strategy provides new insights into developing high-durability,high-capacity cathodes,advancing the practical application of RMMBs,and other new secondary batteries.展开更多
Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the...Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the measured three-dimensional damage geometry is employed in simulations of dynamic vehicle-track interaction to calibrate and verify a simulation model.The relation between the magnitude of the impact load and various operational parameters,such as vehicle speed,lateral position of wheel-rail contact,track stiffness and position of impact within a sleeper bay,is investigated.The calibrated model is later employed in simulations featuring other forms of tread damage;their effects on impact load and subsequent fatigue impact on bearings,wheel webs and subsurface initiated rolling contact fatigue of the wheel tread are assessed.The results quantify the effects of wheel tread defects and are valuable in a shift towards condition-based maintenance of running gear,and for general assessment of the severity of different types of railway wheel tread damage.展开更多
The influence of glycol,the main composition of the most frequently used aircraft dicer,on the freeze-thaw durability of high performance concrete(HPC)is investigated.Freeze-thaw durability of HPC is tested by accel...The influence of glycol,the main composition of the most frequently used aircraft dicer,on the freeze-thaw durability of high performance concrete(HPC)is investigated.Freeze-thaw durability of HPC is tested by accelerated freeze-thaw test.Four kinds of the solution,i.e.,tap water,3.5% NaCl solution,glycol solutions,and a LBR-A type commercial aircraft deicer are employed.Results show that freeze-thaw durability of HPC exposed to glycol solutions is closely related to the solution concentrations.The failure of HPC exposed to 3.5% glycol solution is similar to that of those exposed to 3.5% NaCl solution,i.e.,serious surface scaling.While the damage of HPC exposed to 12.5%—25% glycol solutions is postponed.Compared with glycol solution,the commercial aircraft deicer has much more negative effects on HPC freeze-thaw durability compared with 3.5% NaCl solution.In the presence of commercial aircraft deicer for HPC subjected to freeze-thaw cycles,the deterioration is mainly due to scaling and spalling.展开更多
Heterogeneously catalyzed hydrolytic dehydrogenation of ammonia borane is a remarkable structure sensitive reaction. In this work, a strategy by using polyoxometalates(POMs) as the ligands is proposed to engineer the ...Heterogeneously catalyzed hydrolytic dehydrogenation of ammonia borane is a remarkable structure sensitive reaction. In this work, a strategy by using polyoxometalates(POMs) as the ligands is proposed to engineer the surface and electronic properties of Pt/CNT catalysts toward the enhanced hydrogen generation rate and durability. Three kinds of POMs, i.e., silicotungstic acid(STA), phosphotungstic acid(PTA)and molybdophosphoric acid(PMA), are comparatively studied, among which the STA shows positive effects on the catalytic activity and durability. A catalyst structure-performance relationship is established by a combination of kinetic and isotopic analyses with multiple characterization techniques, such as HAADF-STEM, EDS, Raman spectroscopy and XPS. It is shown that the STA compared to the other two POMs can increase the Pt binding energy and thus promote the reaction. The insights demonstrated here could open a new avenue for boosting the reaction by employing the POMs as the ligands to engineer the catalyst electronic properties.展开更多
The long-term stability of the roof is particularly important in designing underground rock structures.To estimate the durability of roof strata in underground excavation,a computation scheme of subcritical crack grow...The long-term stability of the roof is particularly important in designing underground rock structures.To estimate the durability of roof strata in underground excavation,a computation scheme of subcritical crack growth is proposed in this study.By adopting the proposed method,the potential collapse location of strata is derivable in accordance with a static model,the durability of roof strata can be estimated,a dynamic time step control strategy is achieved to balance the accuracy and speed of computing,and the initial crack size of rock can be estimated.In addition to the above,a mechanical model of underground excavation with non-uniformly distributed loads and partially yielded foundation is presented as the prototypical case.A set of case studies is carried out that showcase a power correlation between applied stress and roof durability.The allowable applied tensile stress for a 100-year life cycle is about 76%of the tensile strength.By using the proposed subcritical crack growth computation scheme,the roof stability in an underground excavation can be identified not only from the spatial view but also from the temporal perspective.展开更多
In this study, we employed a nonthermal atmospheric pressure plasma(NTAPP) jet to evaluate the effect of plasma treatment on the durability of resin–dentin bonding under a thermocycling challenge. Furthermore, we ass...In this study, we employed a nonthermal atmospheric pressure plasma(NTAPP) jet to evaluate the effect of plasma treatment on the durability of resin–dentin bonding under a thermocycling challenge. Furthermore, we assessed the degradation resistance of plasma-treated collagen under a sodium hypochlorite(NaClO) challenge. We assessed the beneficial effect of NTAPP treatment on the acid-etched dentin–bonding interface by testing the micro-tensile bond strength and examining the morphology. We found that the immediate bonding strength of the dentin significantly increased after NTAPP treatment. Compared with the control group, NTAPP resulted in a more prominent effect on the bonding durability of the dentin–adhesive interface after treatment for 5 or 10 s. Simultaneously, the mechanical strength of dentin collagen under the NaClO challenge was improved. Our results indicate that, in optimal conditions, NTAPP could be a promising method to protect dentin collagen and to improve the bonding durability between dentin and etch-and-rinse adhesives.展开更多
This paper describes an orthogonal experiment on the effect of water/cement ratio,water consumption per cubic meter,curing time,and type of sand on the response"resistance to chloride ion penetration".A sea-sand con...This paper describes an orthogonal experiment on the effect of water/cement ratio,water consumption per cubic meter,curing time,and type of sand on the response"resistance to chloride ion penetration".A sea-sand containing concrete was used for the trials.An analysis of chloride ion diffusion coefficients at different factor levels was performed.A predictive model of chloride ion diffusion in concrete is developed through regression analysis.The experimental results show that when the water/cement ratio varies from 0.45 to 0.60,and the water consumption per cubic meter varies from 185 to 215 kg,and the curing time varies from 30 to 180 d then the size of the effects fall in the order(most significant first): curing time,type of sand,water consumption per cubic meter,and water/cement ratio.Chloride ion penetration is reduced,and better durability of the concrete is observed,with longer curing times,less water consumption per cubic meter,and a smaller water/cement ratio.展开更多
In this study,nitrogen doped electrochemically exfoliated reduced graphene oxide and carbon black supported platinum(Pt/Nr EGO_(2)-CB_(3))has been prepared to enhance the performance and durability of hightemperature ...In this study,nitrogen doped electrochemically exfoliated reduced graphene oxide and carbon black supported platinum(Pt/Nr EGO_(2)-CB_(3))has been prepared to enhance the performance and durability of hightemperature PEMFCs with lower Pt loading.On the one hand,Pt/Nr EGO_(2)-CB_(3)with the strong interaction between the Pt and nitrogen(N)prevent agglomeration of Pt particles and Pt particles is 5.46±1.46 nm,which is smaller than that of 6.78±1.34 nm in Pt/C.Meanwhile,ECSA of Pt/Nr EGO_(2)-CB_(3)decrease 13.65%after AST,which is much lower than that of 97.99%in Pt/C.On the other hand,the Nr EGO flakes in MEAac act as a barrier to mitigate phosphoric acid redistribution,which improves the formation of triple-phase boundaries(TPBs)and gives stable operation of the MEAacwith a lower decay rate of 0.02 mV h^(-1)within100 h.After steady-state operation,the maximum power density of Pt/Nr EGO_(2)-CB_(3)(0.411 W cm^(-2))is three times higher than that of conventional Pt/C(0.134 W cm^(-2))in high-temperature PEMFCs.After AST,the mass transfer resistance of Pt/Nr EGO_(2)-CB_(3)electrode(0.560Ωcm^(2))is lower than that in Pt/C(0.728Ωcm^(2)).展开更多
In order to study the fatigue fracture behavior of the rear axle of certain China-made car, the strain loading spectrum near the rear axle fracture location is collected, the modified Neuber rule and the cyclic stress...In order to study the fatigue fracture behavior of the rear axle of certain China-made car, the strain loading spectrum near the rear axle fracture location is collected, the modified Neuber rule and the cyclic stress-strain hysteresis loop curve equation are used to convert the nominal strain his- tory into the local stress-strain response. The impact of mean stress on fatigue damage is corrected according to the Manson-Coffin model, and programming calculation of the fatigue damage of the fracture crack is conducted in the INFIELD software, the electromagnetic vibrators are used to sweep the vibration modal frequencies of the rear axle and car body. The enhancement test and fre- quency sweep results show that the rear axle fatigue damage mainly concentrates on the washboard road, and when the forced vibration excitation frequency is 24. 07 Hz, the vibration modal frequency of the rear axle is close to the excitation frequency of the washboard road, leading to resonance and making the rear axle subjected to large strain and fatigue damage, and then vibration fatigue fracture due to high stress concentration.展开更多
Durable superomniphobic surfaces are desirable for their practical applications,including selfcleaning,non-fouling,protective clothing and the separation of liquids.The plasma-induced polymerization of environmentally...Durable superomniphobic surfaces are desirable for their practical applications,including selfcleaning,non-fouling,protective clothing and the separation of liquids.The plasma-induced polymerization of environmentally friendly C6 from a perfluoralkyl methlacrylate copolymer emulsion,AG-E081,was performed and a durable omniphobic fabric was achieved.C6 is an ecological alternative to C8(eight CF2 groups)fluorinated compounds,and it was thereafter successfully incorporated into aramid fabric to achieve a durable superomniphobic surface.The fabric became water and oil repellent with an extremely high water contact angle of 180°.As tested by the water spray AATCC test and hydrocarbon resistance test,the as-prepared fabric gained 100°(ISO 5)and grade number 4 respectively.Furthermore,the fabrics also showed significantly improved washing durability after ten washing cycles.By scanning electron microscopy(SEM),Fourier-transform infrared spectroscopy(FTIR)and x-ray photoelectron spectroscopy(XPS)tests,it is indicated that the durable superomniphobicity can be attributed to the roughness and activation of the aramid surface by the plasma pre-treatment,which induces more adsorption and chemical graft of the C6 copolymer.展开更多
Nafion-stabilized Pt nanoparticle colloidal solution is synthesized through ethylene glycol reduction.Pt/Nafion added with carbon black as electric conduction material(labeled Pt/Nafion-XC72) shows excellent electro...Nafion-stabilized Pt nanoparticle colloidal solution is synthesized through ethylene glycol reduction.Pt/Nafion added with carbon black as electric conduction material(labeled Pt/Nafion-XC72) shows excellent electrochemical property compared with Pt/C.After a 300-cycle discharging durability test,the cell performance of membrane electrode assembly(MEA) with the Pt/Nafion-XC72 and Pt/C catalysts indicates a 29.9% and 92.2% decrease,respectively.The charge transfer resistances of Pt/Nafion-XC72 and Pt/C increase by 27.2% and 101.9%,respectively.The remaining electrochemically active surface area of Pt is about 61.7% in Pt/Nafion-XC72 and about 38.1% in Pt/C after the durability test.The particle size of Pt/C increases from about 5.1 nm to about 10.8 nm but only from 3.6 nm to 5.8 nm in the case of Pt/Nafion-XC72.These data suggest that Pt/Nafion-XC72 as a catalyst can enhance the durability of PEMFCs compared with Pt/C.展开更多
The primary issue for the commercialization of proton exchange membrane fuel cell(PEMFC) is the carbon corrosion of support under start-up/shut-down conditions. In this study, we employ the nanostructured graphitize...The primary issue for the commercialization of proton exchange membrane fuel cell(PEMFC) is the carbon corrosion of support under start-up/shut-down conditions. In this study, we employ the nanostructured graphitized carbon induced by heat-treatment. The degree of graphitization starts to increase between 900 and 1300 ℃ as evidenced by the change of specific surface area, interlayer spacing, and ID/IG value. Pt nanoparticles are deposited on fresh carbon black(Pt/CB) and carbon heat-treated at 1700 ℃(Pt/HCB17) with similar particle size and distribution. Electrochemical characterization demonstrates that the Pt/HCB17 shows higher activity than the Pt/CB due to the inefficient microporous structure of amorphous carbon for the oxygen reduction reaction. An accelerating potential cycle between 1.0 and 1.5 V for the carbon corrosion is applied to examine durability at a single cell under the practical start-up/shutdown conditions. The Pt/HCB17 catalyst shows remarkable durability after 3000 potential cycles. The Pt/HCB17 catalyst exhibits a peak power density gain of 3%, while the Pt/CB catalyst shows 65% loss of the initial peak power density. As well, electrochemical surface area and mass activity of Pt/HCB17 catalyst are even more stable than those of the Pt/CB catalyst. Consequently, the high degree of graphitization is essential for the durability of fuel cells in practical start-up/shut-down conditions due to enhancing the strong interaction of Pt and π-bonds in graphitized carbon.展开更多
Background:To reduce treatment burden and optimise patient outcomes in diabetic macular oedema,we present 1-year results from two phase 3 trials of faricimab,a novel angiopoietin-2 and vascular endothelial growth fact...Background:To reduce treatment burden and optimise patient outcomes in diabetic macular oedema,we present 1-year results from two phase 3 trials of faricimab,a novel angiopoietin-2 and vascular endothelial growth factor-A bispecific antibody.Methods:YOSEMITE and RHINE were randomised,double-masked,non-inferiority trials across 353 sites worldwide.Adults with vision loss due to centre-involving diabetic macular oedema were randomly assigned(1:1:1)to intravitreal faricimab 6.0 mg every 8 weeks,faricimab 6.0 mg per personalised treatment interval(PTI),or aflibercept 2.0 mg every 8 weeks up to week 100.PTI dosing intervals were extended,maintained,or reduced(every 4 weeks up to every 16 weeks)based on disease activity at active dosing visits.The primary endpoint was mean change in best-corrected visual acuity at 1 year.展开更多
In order to study the influence of parameters on durability of marine concrete structures, the parameter's sensitivity analysis was studied in this paper. With the Fick's 2nd law of diffusion and the deterministic s...In order to study the influence of parameters on durability of marine concrete structures, the parameter's sensitivity analysis was studied in this paper. With the Fick's 2nd law of diffusion and the deterministic sensitivity analysis method (DSA), the sensitivity factors of apparent surface chloride content, apparent chloride diffusion coefficient and its time dependent attenuation factor were analyzed. The results of the analysis show that the impact of design variables on concrete durability was different. The values of sensitivity factor of chloride diffusion coefficient and its time dependent attenuation factor were higher than others. Relative less error in chloride diffusion coefficient and its time dependent attenuation coefficient induces a bigger error in concrete durability design and life prediction. According to probability sensitivity analysis (PSA), the influence of mean value and variance of concrete durability design variables on the durability failure probability was studied. The results of the study provide quantitative measures of the importance of concrete durability design and life prediction variables. It was concluded that the chloride diffusion coefficient and its time dependent attenuation factor have more influence on the reliability of marine concrete structural durability. In durability design and life prediction of marine concrete structures, it was very important to reduce the measure and statistic error of durability design variables.展开更多
Thorn scrub vegetation in Mexico is distributed over 50 million ha, where native tree species are the source of forage, timber, firewood and charcoal. Research describing wood durability of species from this vegetatio...Thorn scrub vegetation in Mexico is distributed over 50 million ha, where native tree species are the source of forage, timber, firewood and charcoal. Research describing wood durability of species from this vegetation type has not been fully determined, nor classified according to international standards. Thus, the aim of this study was to determine and classify the natural durability of ten woody species. Their natural durability was determined according to the European Pre-Norm 807, the loss of dynamic modulus of elasticity (MOEdyo) (MPa) was determined and wood mass loss (g) after being exposed to Trametes versicolor and Coniophora puteana fungi. Wood durability was classified accord- ing to the European Norm 350-1. Highly significant differences (p 〈 0.001) were found between the durability of woody species. The more durable species with lower MOEdyn lost were Condalia hooked (57.5% ± 0.6%), Havardia pallens (58.2% ± 0.4%) and Acacia schaffneri (58.9% ±6.3%). Species with lower mass loss after exposed to Coniophora puteana were Ebenopsis ebano (6.3% ±1.9%), Condalia hooked (8.6% ±2.3%) and Cordia boissieri (11.8% ±2.3%). E. ebano (7.1% ±2.4%), Condalia hooked (8.2% ± 2.5%) and Cordia boissieri (11.5% ± 3.1%) showed the lower mass lost after exposed to T. versicolor. According to European Norm 350-1, three woody species were classified as very durable and durable species.展开更多
Durability has always been the primary function of an engine oil.This continues to be the case,but fuel economy improvement has risen in importance as a feature of a lubricant.This is most easily achieved by lower vis...Durability has always been the primary function of an engine oil.This continues to be the case,but fuel economy improvement has risen in importance as a feature of a lubricant.This is most easily achieved by lower viscosity lubricants,which could endanger the durability of the engine if not properly formulated.Additionally,fuel economy from the lubricant is also considered over the course of a drain interval and the cost optimal point of servicing the oil explored,independent of other durability concerns.Durability is even more critical when the operating severities of the Chinese market are taken into account.Data are presented which demonstrate the differences in severity and the implications this will have on the lubricant,demonstrating the need for high quality lubricants that will protect Chinese vehicles in operation and,in addition,achieve some level of fuel economy improvement.展开更多
The function of externally-bonded carbon fiber reinforced polymer (CFRP) in preventing chloride from entering into concrete is verified by experiment. The results show that externally-bonded CFRP can be considered a...The function of externally-bonded carbon fiber reinforced polymer (CFRP) in preventing chloride from entering into concrete is verified by experiment. The results show that externally-bonded CFRP can be considered as a part of corrosion prevention system of strengthened concrete structures subjected to chloride ingress, and the contribution of CFRP should be considered in evaluation of durability of reinforced concrete structures with externally-bonded CFRP. With the effective shielding function of CFRP considered, an equation for residual lifetime prediction of concrete structures with externally-bonded CFRP is derived from Fick's dispersion law. CFRP has two functions for coastal concrete structures, including strengthening and increasing durability as part of corrosion prevention system.展开更多
Background:Faricimab is a bispecific antibody that acts through dual inhibition of both angiopoietin-2 and vascular endothelial growth factor A.We report primary results of two phase 3 trials evaluating intravitreal f...Background:Faricimab is a bispecific antibody that acts through dual inhibition of both angiopoietin-2 and vascular endothelial growth factor A.We report primary results of two phase 3 trials evaluating intravitreal faricimab with extension up to every 16 weeks for neovascular age-related macular degeneration(nAMD).展开更多
The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ...The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.展开更多
Detecting tiny deformations or vibrations, particularly those associated with strains below 1%, is essential in various technological applications. Traditional intrinsic materials, including metals and semiconductors,...Detecting tiny deformations or vibrations, particularly those associated with strains below 1%, is essential in various technological applications. Traditional intrinsic materials, including metals and semiconductors, face challenges in simultaneously achieving initial metallic state and strain-induced insulating state, hindering the development of highly sensitive mechanical sensors. Here we report an ultrasensitive mechanical sensor based on a strain-induced tunable ordered array of metallic and insulating states in the single-crystal bronze-phase vanadium dioxide [VO_(2)(B)] quantum material. It is shown that the initial metallic state in the VO_(2)(B) flake can be tuned to the insulating state by applying a weak uniaxial tensile strain. Such a unique property gives rise to a record-high gauge factor of above 607970, surpassing previous values by an order of magnitude, with excellent linearity and mechanical resilience as well as durability. As a proof-of-concept application, we use our proposed mechanical sensor to demonstrate precise sensing of the micro piece, gentle airflows and water droplets. We attribute the superior performance of the sensor to the strain-induced continuous metal-insulator transition in the single-crystal VO_(2)(B) flake, evidenced by experimental and simulation results. Our findings highlight the potential of exploiting correlated quantum materials for next-generation ultrasensitive flexible mechanical sensors, addressing critical limitations in traditional materials.展开更多
基金supported by the National Natural Science Foundation of China(52222407).
文摘Rechargeable magnesium-metal batteries(RMMBs)are promising next-generation secondary batteries;however,their development is inhibited by the low capacity and short cycle lifespan of cathodes.Although various strategies have been devised to enhance the Mg^(2+)migration kinetics and structural stability of cathodes,they fail to improve electronic conductivity,rendering the cathodes incompatible with magnesium-metal anodes.Herein,we propose a dual-defect engineering strategy,namely,the incorporation of Mg^(2+)pre-intercalation defect(P-Mgd)and oxygen defect(Od),to simultaneously improve the Mg^(2+)migration kinetics,structural stability,and electronic conductivity of the cathodes of RMMBs.Using lamellar V_(2)O_(5)·nH_(2)O as a demo cathode material,we prepare a cathode comprising Mg_(0.07)V_(2)O_(5)·1.4H_(2)O nanobelts composited with reduced graphene oxide(MVOH/rGO)with P-Mgd and Od.The Od enlarges interlayer spacing,accelerates Mg^(2+)migration kinetics,and prevents structural collapse,while the P-Mgd stabilizes the lamellar structure and increases electronic conductivity.Consequently,the MVOH/rGO cathode exhibits a high capacity of 197 mAh g^(−1),and the developed Mg foil//MVOH/rGO full cell demonstrates an incredible lifespan of 850 cycles at 0.1 A g^(−1),capable of powering a light-emitting diode.The proposed dual-defect engineering strategy provides new insights into developing high-durability,high-capacity cathodes,advancing the practical application of RMMBs,and other new secondary batteries.
基金funded from the European Union's Horizon 2020 research and innovation programme in the project In2Track3 under grant agreement No.101012456.
文摘Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the measured three-dimensional damage geometry is employed in simulations of dynamic vehicle-track interaction to calibrate and verify a simulation model.The relation between the magnitude of the impact load and various operational parameters,such as vehicle speed,lateral position of wheel-rail contact,track stiffness and position of impact within a sleeper bay,is investigated.The calibrated model is later employed in simulations featuring other forms of tread damage;their effects on impact load and subsequent fatigue impact on bearings,wheel webs and subsurface initiated rolling contact fatigue of the wheel tread are assessed.The results quantify the effects of wheel tread defects and are valuable in a shift towards condition-based maintenance of running gear,and for general assessment of the severity of different types of railway wheel tread damage.
基金Supported by the National Basic Research Program of China("973"Program)(2009CB623203)the China Postdoctoral Science Foundation(20070421036)+1 种基金the Natural Science Foundation of Jiangsu Province(BK2005216)the Research Foundation of Nanjing University of Aeronautics and Astronautics(NS2010015)~~
文摘The influence of glycol,the main composition of the most frequently used aircraft dicer,on the freeze-thaw durability of high performance concrete(HPC)is investigated.Freeze-thaw durability of HPC is tested by accelerated freeze-thaw test.Four kinds of the solution,i.e.,tap water,3.5% NaCl solution,glycol solutions,and a LBR-A type commercial aircraft deicer are employed.Results show that freeze-thaw durability of HPC exposed to glycol solutions is closely related to the solution concentrations.The failure of HPC exposed to 3.5% glycol solution is similar to that of those exposed to 3.5% NaCl solution,i.e.,serious surface scaling.While the damage of HPC exposed to 12.5%—25% glycol solutions is postponed.Compared with glycol solution,the commercial aircraft deicer has much more negative effects on HPC freeze-thaw durability compared with 3.5% NaCl solution.In the presence of commercial aircraft deicer for HPC subjected to freeze-thaw cycles,the deterioration is mainly due to scaling and spalling.
基金supported by the National Natural Science Foundation of China(21776077)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning+3 种基金the Shanghai Rising-Star Program(17QA1401200)the Open Project of SKLOCE(SKL-Che-15C03)the Shanghai Natural Science Foundation(17ZR1407300 and 17ZR1407500)the State Key Laboratory of Organic-Inorganic Composites(oic201801007)。
文摘Heterogeneously catalyzed hydrolytic dehydrogenation of ammonia borane is a remarkable structure sensitive reaction. In this work, a strategy by using polyoxometalates(POMs) as the ligands is proposed to engineer the surface and electronic properties of Pt/CNT catalysts toward the enhanced hydrogen generation rate and durability. Three kinds of POMs, i.e., silicotungstic acid(STA), phosphotungstic acid(PTA)and molybdophosphoric acid(PMA), are comparatively studied, among which the STA shows positive effects on the catalytic activity and durability. A catalyst structure-performance relationship is established by a combination of kinetic and isotopic analyses with multiple characterization techniques, such as HAADF-STEM, EDS, Raman spectroscopy and XPS. It is shown that the STA compared to the other two POMs can increase the Pt binding energy and thus promote the reaction. The insights demonstrated here could open a new avenue for boosting the reaction by employing the POMs as the ligands to engineer the catalyst electronic properties.
基金China Scholarship Council(CSC)The University of Queensland for a Ph D fellowship。
文摘The long-term stability of the roof is particularly important in designing underground rock structures.To estimate the durability of roof strata in underground excavation,a computation scheme of subcritical crack growth is proposed in this study.By adopting the proposed method,the potential collapse location of strata is derivable in accordance with a static model,the durability of roof strata can be estimated,a dynamic time step control strategy is achieved to balance the accuracy and speed of computing,and the initial crack size of rock can be estimated.In addition to the above,a mechanical model of underground excavation with non-uniformly distributed loads and partially yielded foundation is presented as the prototypical case.A set of case studies is carried out that showcase a power correlation between applied stress and roof durability.The allowable applied tensile stress for a 100-year life cycle is about 76%of the tensile strength.By using the proposed subcritical crack growth computation scheme,the roof stability in an underground excavation can be identified not only from the spatial view but also from the temporal perspective.
基金supported by grants from National Natural Science Foundation of China(Nos.81701014,81801310,31700076)the Basic Research of Natural Science Project funded by the Department of Science and Technology of Shaanxi Province(No.2017JM8038)the Science and Technology Project funded by the Science and Technology Bureau of Weiyang District,Xi’an city(No.201846)。
文摘In this study, we employed a nonthermal atmospheric pressure plasma(NTAPP) jet to evaluate the effect of plasma treatment on the durability of resin–dentin bonding under a thermocycling challenge. Furthermore, we assessed the degradation resistance of plasma-treated collagen under a sodium hypochlorite(NaClO) challenge. We assessed the beneficial effect of NTAPP treatment on the acid-etched dentin–bonding interface by testing the micro-tensile bond strength and examining the morphology. We found that the immediate bonding strength of the dentin significantly increased after NTAPP treatment. Compared with the control group, NTAPP resulted in a more prominent effect on the bonding durability of the dentin–adhesive interface after treatment for 5 or 10 s. Simultaneously, the mechanical strength of dentin collagen under the NaClO challenge was improved. Our results indicate that, in optimal conditions, NTAPP could be a promising method to protect dentin collagen and to improve the bonding durability between dentin and etch-and-rinse adhesives.
基金This project owes gratitude to the Science and Technology Project (No.2008-K4-27) of Ministry of Housing and Urban-Rural Developmentthe"Tralented Personnel Nurturing in Six Fundamental Fields"Project of Jiangsu Province and"Qing-Lan Project"+2 种基金the Science and Technology Project of Jiangsu Bureau of Construction and Supervision (No.JG2007-13)the Science and Technology Planning Project of Xuzhou City(No.XJ08077)the Scientific Research Project of Xuzhou Institute of Technology(No.XKY2008225).
文摘This paper describes an orthogonal experiment on the effect of water/cement ratio,water consumption per cubic meter,curing time,and type of sand on the response"resistance to chloride ion penetration".A sea-sand containing concrete was used for the trials.An analysis of chloride ion diffusion coefficients at different factor levels was performed.A predictive model of chloride ion diffusion in concrete is developed through regression analysis.The experimental results show that when the water/cement ratio varies from 0.45 to 0.60,and the water consumption per cubic meter varies from 185 to 215 kg,and the curing time varies from 30 to 180 d then the size of the effects fall in the order(most significant first): curing time,type of sand,water consumption per cubic meter,and water/cement ratio.Chloride ion penetration is reduced,and better durability of the concrete is observed,with longer curing times,less water consumption per cubic meter,and a smaller water/cement ratio.
基金supported by the Engineering and Physical Sciences Research Council(EPSRC)(EP/P009050/1 and EP/S021531/1)Tthe Henry Royce Institute for Advanced Materials,funded through the EPSRC grants(EP/R00661X/1,EP/S019367/1,EP/P025021/1 and EP/P025498/1)。
文摘In this study,nitrogen doped electrochemically exfoliated reduced graphene oxide and carbon black supported platinum(Pt/Nr EGO_(2)-CB_(3))has been prepared to enhance the performance and durability of hightemperature PEMFCs with lower Pt loading.On the one hand,Pt/Nr EGO_(2)-CB_(3)with the strong interaction between the Pt and nitrogen(N)prevent agglomeration of Pt particles and Pt particles is 5.46±1.46 nm,which is smaller than that of 6.78±1.34 nm in Pt/C.Meanwhile,ECSA of Pt/Nr EGO_(2)-CB_(3)decrease 13.65%after AST,which is much lower than that of 97.99%in Pt/C.On the other hand,the Nr EGO flakes in MEAac act as a barrier to mitigate phosphoric acid redistribution,which improves the formation of triple-phase boundaries(TPBs)and gives stable operation of the MEAacwith a lower decay rate of 0.02 mV h^(-1)within100 h.After steady-state operation,the maximum power density of Pt/Nr EGO_(2)-CB_(3)(0.411 W cm^(-2))is three times higher than that of conventional Pt/C(0.134 W cm^(-2))in high-temperature PEMFCs.After AST,the mass transfer resistance of Pt/Nr EGO_(2)-CB_(3)electrode(0.560Ωcm^(2))is lower than that in Pt/C(0.728Ωcm^(2)).
基金Supported by the National Natural Science Foundation of China( 51008034 )Development Plan Project of Jilin Provincial Science and Technology Department ( 201201135)Chunmiao Foundation of Jilin Provincial Education Department( 2013299)
文摘In order to study the fatigue fracture behavior of the rear axle of certain China-made car, the strain loading spectrum near the rear axle fracture location is collected, the modified Neuber rule and the cyclic stress-strain hysteresis loop curve equation are used to convert the nominal strain his- tory into the local stress-strain response. The impact of mean stress on fatigue damage is corrected according to the Manson-Coffin model, and programming calculation of the fatigue damage of the fracture crack is conducted in the INFIELD software, the electromagnetic vibrators are used to sweep the vibration modal frequencies of the rear axle and car body. The enhancement test and fre- quency sweep results show that the rear axle fatigue damage mainly concentrates on the washboard road, and when the forced vibration excitation frequency is 24. 07 Hz, the vibration modal frequency of the rear axle is close to the excitation frequency of the washboard road, leading to resonance and making the rear axle subjected to large strain and fatigue damage, and then vibration fatigue fracture due to high stress concentration.
基金supported by the Fundamental Research Funds for the Central Universities 2232019A3-12National Natural Science Foundation of China(No.11375042)。
文摘Durable superomniphobic surfaces are desirable for their practical applications,including selfcleaning,non-fouling,protective clothing and the separation of liquids.The plasma-induced polymerization of environmentally friendly C6 from a perfluoralkyl methlacrylate copolymer emulsion,AG-E081,was performed and a durable omniphobic fabric was achieved.C6 is an ecological alternative to C8(eight CF2 groups)fluorinated compounds,and it was thereafter successfully incorporated into aramid fabric to achieve a durable superomniphobic surface.The fabric became water and oil repellent with an extremely high water contact angle of 180°.As tested by the water spray AATCC test and hydrocarbon resistance test,the as-prepared fabric gained 100°(ISO 5)and grade number 4 respectively.Furthermore,the fabrics also showed significantly improved washing durability after ten washing cycles.By scanning electron microscopy(SEM),Fourier-transform infrared spectroscopy(FTIR)and x-ray photoelectron spectroscopy(XPS)tests,it is indicated that the durable superomniphobicity can be attributed to the roughness and activation of the aramid surface by the plasma pre-treatment,which induces more adsorption and chemical graft of the C6 copolymer.
基金supported by the National Basic Research Program of China(973 Program,Grant No.2012CB215500the National High-Tech Research and Development Program of China(863 Plan)(No.2012AA052002)the National Natural Science Foundation of China(No.21406024)
文摘Nafion-stabilized Pt nanoparticle colloidal solution is synthesized through ethylene glycol reduction.Pt/Nafion added with carbon black as electric conduction material(labeled Pt/Nafion-XC72) shows excellent electrochemical property compared with Pt/C.After a 300-cycle discharging durability test,the cell performance of membrane electrode assembly(MEA) with the Pt/Nafion-XC72 and Pt/C catalysts indicates a 29.9% and 92.2% decrease,respectively.The charge transfer resistances of Pt/Nafion-XC72 and Pt/C increase by 27.2% and 101.9%,respectively.The remaining electrochemically active surface area of Pt is about 61.7% in Pt/Nafion-XC72 and about 38.1% in Pt/C after the durability test.The particle size of Pt/C increases from about 5.1 nm to about 10.8 nm but only from 3.6 nm to 5.8 nm in the case of Pt/Nafion-XC72.These data suggest that Pt/Nafion-XC72 as a catalyst can enhance the durability of PEMFCs compared with Pt/C.
文摘The primary issue for the commercialization of proton exchange membrane fuel cell(PEMFC) is the carbon corrosion of support under start-up/shut-down conditions. In this study, we employ the nanostructured graphitized carbon induced by heat-treatment. The degree of graphitization starts to increase between 900 and 1300 ℃ as evidenced by the change of specific surface area, interlayer spacing, and ID/IG value. Pt nanoparticles are deposited on fresh carbon black(Pt/CB) and carbon heat-treated at 1700 ℃(Pt/HCB17) with similar particle size and distribution. Electrochemical characterization demonstrates that the Pt/HCB17 shows higher activity than the Pt/CB due to the inefficient microporous structure of amorphous carbon for the oxygen reduction reaction. An accelerating potential cycle between 1.0 and 1.5 V for the carbon corrosion is applied to examine durability at a single cell under the practical start-up/shutdown conditions. The Pt/HCB17 catalyst shows remarkable durability after 3000 potential cycles. The Pt/HCB17 catalyst exhibits a peak power density gain of 3%, while the Pt/CB catalyst shows 65% loss of the initial peak power density. As well, electrochemical surface area and mass activity of Pt/HCB17 catalyst are even more stable than those of the Pt/CB catalyst. Consequently, the high degree of graphitization is essential for the durability of fuel cells in practical start-up/shut-down conditions due to enhancing the strong interaction of Pt and π-bonds in graphitized carbon.
文摘Background:To reduce treatment burden and optimise patient outcomes in diabetic macular oedema,we present 1-year results from two phase 3 trials of faricimab,a novel angiopoietin-2 and vascular endothelial growth factor-A bispecific antibody.Methods:YOSEMITE and RHINE were randomised,double-masked,non-inferiority trials across 353 sites worldwide.Adults with vision loss due to centre-involving diabetic macular oedema were randomly assigned(1:1:1)to intravitreal faricimab 6.0 mg every 8 weeks,faricimab 6.0 mg per personalised treatment interval(PTI),or aflibercept 2.0 mg every 8 weeks up to week 100.PTI dosing intervals were extended,maintained,or reduced(every 4 weeks up to every 16 weeks)based on disease activity at active dosing visits.The primary endpoint was mean change in best-corrected visual acuity at 1 year.
文摘In order to study the influence of parameters on durability of marine concrete structures, the parameter's sensitivity analysis was studied in this paper. With the Fick's 2nd law of diffusion and the deterministic sensitivity analysis method (DSA), the sensitivity factors of apparent surface chloride content, apparent chloride diffusion coefficient and its time dependent attenuation factor were analyzed. The results of the analysis show that the impact of design variables on concrete durability was different. The values of sensitivity factor of chloride diffusion coefficient and its time dependent attenuation factor were higher than others. Relative less error in chloride diffusion coefficient and its time dependent attenuation coefficient induces a bigger error in concrete durability design and life prediction. According to probability sensitivity analysis (PSA), the influence of mean value and variance of concrete durability design variables on the durability failure probability was studied. The results of the study provide quantitative measures of the importance of concrete durability design and life prediction variables. It was concluded that the chloride diffusion coefficient and its time dependent attenuation factor have more influence on the reliability of marine concrete structural durability. In durability design and life prediction of marine concrete structures, it was very important to reduce the measure and statistic error of durability design variables.
基金supported by the Professors improvement Program (PROMEP) and the Science and Technology Support Research Program (Granted to the first author PAICyT)
文摘Thorn scrub vegetation in Mexico is distributed over 50 million ha, where native tree species are the source of forage, timber, firewood and charcoal. Research describing wood durability of species from this vegetation type has not been fully determined, nor classified according to international standards. Thus, the aim of this study was to determine and classify the natural durability of ten woody species. Their natural durability was determined according to the European Pre-Norm 807, the loss of dynamic modulus of elasticity (MOEdyo) (MPa) was determined and wood mass loss (g) after being exposed to Trametes versicolor and Coniophora puteana fungi. Wood durability was classified accord- ing to the European Norm 350-1. Highly significant differences (p 〈 0.001) were found between the durability of woody species. The more durable species with lower MOEdyn lost were Condalia hooked (57.5% ± 0.6%), Havardia pallens (58.2% ± 0.4%) and Acacia schaffneri (58.9% ±6.3%). Species with lower mass loss after exposed to Coniophora puteana were Ebenopsis ebano (6.3% ±1.9%), Condalia hooked (8.6% ±2.3%) and Cordia boissieri (11.8% ±2.3%). E. ebano (7.1% ±2.4%), Condalia hooked (8.2% ± 2.5%) and Cordia boissieri (11.5% ± 3.1%) showed the lower mass lost after exposed to T. versicolor. According to European Norm 350-1, three woody species were classified as very durable and durable species.
文摘Durability has always been the primary function of an engine oil.This continues to be the case,but fuel economy improvement has risen in importance as a feature of a lubricant.This is most easily achieved by lower viscosity lubricants,which could endanger the durability of the engine if not properly formulated.Additionally,fuel economy from the lubricant is also considered over the course of a drain interval and the cost optimal point of servicing the oil explored,independent of other durability concerns.Durability is even more critical when the operating severities of the Chinese market are taken into account.Data are presented which demonstrate the differences in severity and the implications this will have on the lubricant,demonstrating the need for high quality lubricants that will protect Chinese vehicles in operation and,in addition,achieve some level of fuel economy improvement.
文摘The function of externally-bonded carbon fiber reinforced polymer (CFRP) in preventing chloride from entering into concrete is verified by experiment. The results show that externally-bonded CFRP can be considered as a part of corrosion prevention system of strengthened concrete structures subjected to chloride ingress, and the contribution of CFRP should be considered in evaluation of durability of reinforced concrete structures with externally-bonded CFRP. With the effective shielding function of CFRP considered, an equation for residual lifetime prediction of concrete structures with externally-bonded CFRP is derived from Fick's dispersion law. CFRP has two functions for coastal concrete structures, including strengthening and increasing durability as part of corrosion prevention system.
文摘Background:Faricimab is a bispecific antibody that acts through dual inhibition of both angiopoietin-2 and vascular endothelial growth factor A.We report primary results of two phase 3 trials evaluating intravitreal faricimab with extension up to every 16 weeks for neovascular age-related macular degeneration(nAMD).
基金supported by the Taishan Scholar Program of Shandong Province,China (tsqn202211162)the National Natural Science Foundation of China (22102079)the Natural Science Foundation of Shandong Province of China (ZR2021YQ10,ZR2022QB163)。
文摘The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.
基金supported in part by the National Key R&D Program of China (Grant Nos.2023YFF1203600 and 2023YFF0718400)the National Natural Science Foundation of China (Grant Nos.62122036,12322407,62034004,61921005,and 12074176)+2 种基金the Leading-edge Technology Program of Jiangsu Natural Science Foundation (Grant No.BK20232004)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB44000000)support from the AIQ Foundation and the eScience Center of Collaborative Innovation Center of Advanced Microstructures。
文摘Detecting tiny deformations or vibrations, particularly those associated with strains below 1%, is essential in various technological applications. Traditional intrinsic materials, including metals and semiconductors, face challenges in simultaneously achieving initial metallic state and strain-induced insulating state, hindering the development of highly sensitive mechanical sensors. Here we report an ultrasensitive mechanical sensor based on a strain-induced tunable ordered array of metallic and insulating states in the single-crystal bronze-phase vanadium dioxide [VO_(2)(B)] quantum material. It is shown that the initial metallic state in the VO_(2)(B) flake can be tuned to the insulating state by applying a weak uniaxial tensile strain. Such a unique property gives rise to a record-high gauge factor of above 607970, surpassing previous values by an order of magnitude, with excellent linearity and mechanical resilience as well as durability. As a proof-of-concept application, we use our proposed mechanical sensor to demonstrate precise sensing of the micro piece, gentle airflows and water droplets. We attribute the superior performance of the sensor to the strain-induced continuous metal-insulator transition in the single-crystal VO_(2)(B) flake, evidenced by experimental and simulation results. Our findings highlight the potential of exploiting correlated quantum materials for next-generation ultrasensitive flexible mechanical sensors, addressing critical limitations in traditional materials.