The stability of the periodic solution of the Duffing oscillator system in the periodic phase state is proved by using the Yoshizaw theorem, which establishes a theoretical basis for using this kind of chaotic oscilla...The stability of the periodic solution of the Duffing oscillator system in the periodic phase state is proved by using the Yoshizaw theorem, which establishes a theoretical basis for using this kind of chaotic oscillator system to detect weak signals. The restoring force term of the system affects the weak-signal detection ability of the system directly, the quantitative relationship between the coefficients of the linear and nonlinear items of the restoring force of the Duffing oscillator system and the SNR in the detection of weak signals is obtained through a large number of simulation experiments, then a new restoring force function with better detection results is established.展开更多
Identifying state transition and determining the critical value of the Duffing oscillator are crucial to indicating external signal existence and have a great influence on detection accuracy in weak signal detection. ...Identifying state transition and determining the critical value of the Duffing oscillator are crucial to indicating external signal existence and have a great influence on detection accuracy in weak signal detection. A circular zone counting (CZC) method is proposed in this paper, by combining the Duffing oscillator's phase trajectory feature and numerical calculation for quickly and accurately identifying state transition and determining the critical value, to realize a high- efficiency weak signal detection. Detailed model analysis and method construction of the CZC method are introduced. Numerical experiments into the reliability of the proposed CZC method compared with the maximum Lyapunov exponent (MLE) method are carried out. The CZC method is demonstrated to have better detecting ability than the MLE method, and furthermore it is simpler and clearer in calculation to extend to engineering application.展开更多
The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillator's phase...The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillator's phase trajectory in a small- scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system.展开更多
This paper presents a novel approach to extract the periodic signals masked by a chaotic carrier. It verifies that the driven Duffing oscillator is immune to the chaotic carrier and sensitive to certain periodic signa...This paper presents a novel approach to extract the periodic signals masked by a chaotic carrier. It verifies that the driven Duffing oscillator is immune to the chaotic carrier and sensitive to certain periodic signals. A preliminary detection scenario illustrates that the frequency and amplitude of the hidden sine wave signal can be extracted from the chaotic carrier by numerical simulation. The obtained results indicate that the hidden messages in chaotic secure communication can be eavesdropped utilizing Duffing oscillators.展开更多
Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-no...Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-noise ratios(SNRs).To overcome these problems,a blind parameter estimation method based on a Duffing oscillator array is proposed.A new relationship formula among the state of the Duffing oscillator,the pseudo-random sequence of the PRBC-LFM signal,and the frequency difference between the PRBC-LFM signal and the periodic driving force signal of the Duffing oscillator is derived,providing the theoretical basis for blind parameter estimation.Methods based on amplitude method,short-time Fourier transform method,and power spectrum entropy method are used to binarize the output of the Duffing oscillator array,and their performance is compared.The pseudo-random sequence is estimated using Duffing oscillator array synchronization,and the carrier frequency parameters are obtained by the relational expressions and characteristics of the difference frequency.Simulation results show that this blind estimation method overcomes limitations in prior knowledge and maintains good parameter estimation performance up to an SNR of-35 dB.展开更多
In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter e...In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter estimation method for LFM signals with a Duffing oscillator based on frequency periodicity is proposed in this paper.This method utilizes the characteristic that the output signal of the Duffing oscillator excited by the LFM signal changes periodically with frequency,and the modulation period of the LFM signal is estimated by autocorrelation processing of the output signal of the Duffing oscillator.On this basis,the corresponding relationship between the reference frequency of the frequencyaligned Duffing oscillator and the frequency range of the LFM signal is analyzed by the periodic power spectrum method,and the frequency information of the LFM signal is determined.Simulation results show that this method can achieve high-accuracy parameter estimation for LFM signals at an SNR of-25 dB.展开更多
Nonlinear response of the driven Duffing oscillator to periodic or quasi-periodic signals has been well studied. In this paper, we investigate the nonlinear response of the driven Duffing oscillator to non-periodic, m...Nonlinear response of the driven Duffing oscillator to periodic or quasi-periodic signals has been well studied. In this paper, we investigate the nonlinear response of the driven Duffing oscillator to non-periodic, more specifically, chaotic time series. Through numerical simulations, we find that the driven Duffing oscillator can also show regular nonlinear response to the chaotic time series with different degree of chaos as generated by the same chaotic series generating model, and there exists a relationship between the state of the driven Duffing oscillator and the chaoticity of the input signal of the driven Duffing oscillator. One real-world and two artificial chaotic time series are used to verify the new feature of Duffing oscillator. A potential application of the new feature of Duffing oscillator is also indicated.展开更多
Succinct and efficient method to obtain analytic solutions of nonlinear vibrations and nonlinear waves by Jacobian elliptic functions are introduced. Important typical examples are given and explained, including simpl...Succinct and efficient method to obtain analytic solutions of nonlinear vibrations and nonlinear waves by Jacobian elliptic functions are introduced. Important typical examples are given and explained, including simple pendulum, Duffing oscillator, cnoidal wave and solitary wave solutions of KdV equation, sine-Gordon equation, nonlinear Schrdinger equation, sech^2 profile solitons, kink and anti-kink solitons, breather, interaction of a kink and an anti-kink, and envelop solitons.展开更多
A technical framework of constructing a linear controller for chaotic synchronization by utilizing the stability theory of cascade-connected system is presented. Based on the method developed in the paper, two simple ...A technical framework of constructing a linear controller for chaotic synchronization by utilizing the stability theory of cascade-connected system is presented. Based on the method developed in the paper, two simple and linear feedback controllers, as examples, are derived for the synchronization of Liu chaotic system and Duffing oscillator, respectively. This method is quite flexible in constructing a control law. Its effectiveness is also illustrated by the simulation results.展开更多
Based on the theory of Duffing oscillator weak signal detection and the technology of extended binary phase shift keying (EBPSK) modulation, the chaotic demodulator using the Duffing oscillator for EBPSK signals was...Based on the theory of Duffing oscillator weak signal detection and the technology of extended binary phase shift keying (EBPSK) modulation, the chaotic demodulator using the Duffing oscillator for EBPSK signals was proposed. The proposed demodulator could avoid the problem of demodulation filters design, and shows the excellent anti-noise capability of chaotic oscillator detection. Numerical and experimental tests were taken to investigate the impact of modulation parameters T and 0 on bit error performance of the proposed method, and the performance limits were gotten. The results show that the proposed chaotic demodulator works well under a very low signal-to-noise ratio (SNR) conditions, and gets SNR gains about 20 dB to 30 dB from the impulse filter.展开更多
Based on the strain invariant relationship and taking the high-order elastic energy into account, a nonlinear wave equation is derived, in which the excitation, linear damping, and the other nonlinear terms are regard...Based on the strain invariant relationship and taking the high-order elastic energy into account, a nonlinear wave equation is derived, in which the excitation, linear damping, and the other nonlinear terms are regarded as the first-order correction to the linear wave equation. To solve the equation, the biggest challenge is that the secular terms exist not only in the fundamental wave equation but also in the harmonic wave equation (unlike the Duffing oscillator, where they exist only in the fundamental wave equation). In order to overcome this difficulty and to obtain a steady periodic solution by the perturbation technique, the following procedures are taken: (i) for the fundamental wave equation, the secular term is eliminated and therefore a frequency response equation is obtained; (ii) for the harmonics, the cumulative solutions are sought by the Lagrange variation parameter method. It is shown by the results obtained that the second- and higher-order harmonic waves exist in a vibrating bar, of which the amplitude increases linearly with the distance from the source when its length is much more than the wavelength; the shift of the resonant peak and the amplitudes of the harmonic waves depend closely on nonlinear coefficients; there are similarities to a certain extent among the amplitudes of the odd- (or even-) order harmonics, based on which the nonlinear coefficients can be determined by varying the strain and measuring the amplitudes of the harmonic waves in different locations.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 40374045 and 40574051), and by the Jilin Technology Development Plan (Grant No 20050526),
文摘The stability of the periodic solution of the Duffing oscillator system in the periodic phase state is proved by using the Yoshizaw theorem, which establishes a theoretical basis for using this kind of chaotic oscillator system to detect weak signals. The restoring force term of the system affects the weak-signal detection ability of the system directly, the quantitative relationship between the coefficients of the linear and nonlinear items of the restoring force of the Duffing oscillator system and the SNR in the detection of weak signals is obtained through a large number of simulation experiments, then a new restoring force function with better detection results is established.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61172047 and 61071025)
文摘Identifying state transition and determining the critical value of the Duffing oscillator are crucial to indicating external signal existence and have a great influence on detection accuracy in weak signal detection. A circular zone counting (CZC) method is proposed in this paper, by combining the Duffing oscillator's phase trajectory feature and numerical calculation for quickly and accurately identifying state transition and determining the critical value, to realize a high- efficiency weak signal detection. Detailed model analysis and method construction of the CZC method are introduced. Numerical experiments into the reliability of the proposed CZC method compared with the maximum Lyapunov exponent (MLE) method are carried out. The CZC method is demonstrated to have better detecting ability than the MLE method, and furthermore it is simpler and clearer in calculation to extend to engineering application.
基金Project supported by the National Natural Science Foundation of China(Grant No.61673066)
文摘The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillator's phase trajectory in a small- scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system.
基金supported by the National Natural Science Foundation of China (Grant Nos 60577019 and 60777041) the International Cooperation Project of Shanxi Province,China
文摘This paper presents a novel approach to extract the periodic signals masked by a chaotic carrier. It verifies that the driven Duffing oscillator is immune to the chaotic carrier and sensitive to certain periodic signals. A preliminary detection scenario illustrates that the frequency and amplitude of the hidden sine wave signal can be extracted from the chaotic carrier by numerical simulation. The obtained results indicate that the hidden messages in chaotic secure communication can be eavesdropped utilizing Duffing oscillators.
基金the National Natural Science Foundation of China(Grant Nos.61973037 and 61673066).
文摘Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-noise ratios(SNRs).To overcome these problems,a blind parameter estimation method based on a Duffing oscillator array is proposed.A new relationship formula among the state of the Duffing oscillator,the pseudo-random sequence of the PRBC-LFM signal,and the frequency difference between the PRBC-LFM signal and the periodic driving force signal of the Duffing oscillator is derived,providing the theoretical basis for blind parameter estimation.Methods based on amplitude method,short-time Fourier transform method,and power spectrum entropy method are used to binarize the output of the Duffing oscillator array,and their performance is compared.The pseudo-random sequence is estimated using Duffing oscillator array synchronization,and the carrier frequency parameters are obtained by the relational expressions and characteristics of the difference frequency.Simulation results show that this blind estimation method overcomes limitations in prior knowledge and maintains good parameter estimation performance up to an SNR of-35 dB.
基金Project supported by the National Natural Science Foundation of China(Grant No.61973037)。
文摘In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter estimation method for LFM signals with a Duffing oscillator based on frequency periodicity is proposed in this paper.This method utilizes the characteristic that the output signal of the Duffing oscillator excited by the LFM signal changes periodically with frequency,and the modulation period of the LFM signal is estimated by autocorrelation processing of the output signal of the Duffing oscillator.On this basis,the corresponding relationship between the reference frequency of the frequencyaligned Duffing oscillator and the frequency range of the LFM signal is analyzed by the periodic power spectrum method,and the frequency information of the LFM signal is determined.Simulation results show that this method can achieve high-accuracy parameter estimation for LFM signals at an SNR of-25 dB.
基金supported by the National Natural Science Foundation of China (Grant Nos 40574051 and 40774054)
文摘Nonlinear response of the driven Duffing oscillator to periodic or quasi-periodic signals has been well studied. In this paper, we investigate the nonlinear response of the driven Duffing oscillator to non-periodic, more specifically, chaotic time series. Through numerical simulations, we find that the driven Duffing oscillator can also show regular nonlinear response to the chaotic time series with different degree of chaos as generated by the same chaotic series generating model, and there exists a relationship between the state of the driven Duffing oscillator and the chaoticity of the input signal of the driven Duffing oscillator. One real-world and two artificial chaotic time series are used to verify the new feature of Duffing oscillator. A potential application of the new feature of Duffing oscillator is also indicated.
文摘Succinct and efficient method to obtain analytic solutions of nonlinear vibrations and nonlinear waves by Jacobian elliptic functions are introduced. Important typical examples are given and explained, including simple pendulum, Duffing oscillator, cnoidal wave and solitary wave solutions of KdV equation, sine-Gordon equation, nonlinear Schrdinger equation, sech^2 profile solitons, kink and anti-kink solitons, breather, interaction of a kink and an anti-kink, and envelop solitons.
基金Project supported by the National Natural Science Foundation of China (Grant No 60274032) and the Science and Technology Rising-Star Program of Shanghai (Grant No 04QMH1405).
文摘A technical framework of constructing a linear controller for chaotic synchronization by utilizing the stability theory of cascade-connected system is presented. Based on the method developed in the paper, two simple and linear feedback controllers, as examples, are derived for the synchronization of Liu chaotic system and Duffing oscillator, respectively. This method is quite flexible in constructing a control law. Its effectiveness is also illustrated by the simulation results.
基金supported by the National Natural Science Foundation of China under Grant No.41476089
文摘Based on the theory of Duffing oscillator weak signal detection and the technology of extended binary phase shift keying (EBPSK) modulation, the chaotic demodulator using the Duffing oscillator for EBPSK signals was proposed. The proposed demodulator could avoid the problem of demodulation filters design, and shows the excellent anti-noise capability of chaotic oscillator detection. Numerical and experimental tests were taken to investigate the impact of modulation parameters T and 0 on bit error performance of the proposed method, and the performance limits were gotten. The results show that the proposed chaotic demodulator works well under a very low signal-to-noise ratio (SNR) conditions, and gets SNR gains about 20 dB to 30 dB from the impulse filter.
基金supported by the National Natural Science Foundation of China(Grant No.11274337)
文摘Based on the strain invariant relationship and taking the high-order elastic energy into account, a nonlinear wave equation is derived, in which the excitation, linear damping, and the other nonlinear terms are regarded as the first-order correction to the linear wave equation. To solve the equation, the biggest challenge is that the secular terms exist not only in the fundamental wave equation but also in the harmonic wave equation (unlike the Duffing oscillator, where they exist only in the fundamental wave equation). In order to overcome this difficulty and to obtain a steady periodic solution by the perturbation technique, the following procedures are taken: (i) for the fundamental wave equation, the secular term is eliminated and therefore a frequency response equation is obtained; (ii) for the harmonics, the cumulative solutions are sought by the Lagrange variation parameter method. It is shown by the results obtained that the second- and higher-order harmonic waves exist in a vibrating bar, of which the amplitude increases linearly with the distance from the source when its length is much more than the wavelength; the shift of the resonant peak and the amplitudes of the harmonic waves depend closely on nonlinear coefficients; there are similarities to a certain extent among the amplitudes of the odd- (or even-) order harmonics, based on which the nonlinear coefficients can be determined by varying the strain and measuring the amplitudes of the harmonic waves in different locations.