On the basis of the gain-scheduled H∞ design strategy, a novel active fault-tolerant control scheme is proposed. Under the assumption that the effects of faults on the state-space matrices of systems can be of affine...On the basis of the gain-scheduled H∞ design strategy, a novel active fault-tolerant control scheme is proposed. Under the assumption that the effects of faults on the state-space matrices of systems can be of affine parameter dependence, a reconfigurable robust H∞ linear parameter varying controller is developed. The designed controller is a function of the fault effect factors that can be derived online by using a well-trained neural network. To demonstrate the effectiveness of the proposed method, a double inverted pendulum system, with a fault in the motor tachometer loop, is considered.展开更多
为解决在双可重构智能超表面(Reconfigurable Intelligent Surface,RIS)系统中获取高维信道状态信息(Channel State Information,CSI)的挑战,提出了一种基于混合张量分解的多链路联合信道估计算法。首先,通过设计导频传输机制,将单反射...为解决在双可重构智能超表面(Reconfigurable Intelligent Surface,RIS)系统中获取高维信道状态信息(Channel State Information,CSI)的挑战,提出了一种基于混合张量分解的多链路联合信道估计算法。首先,通过设计导频传输机制,将单反射链路和双反射链路的接收信号分别建模为平行因子模型和平行因子塔克(Tucker)张量模型,将信道估计问题转化为混合张量因子矩阵的拟合问题。然后,考虑到多条链路之间共享的CSI,采用一种基于交替最小二乘迭代算法来分解混合张量,以有效估计出因子矩阵。最后,通过对该混合张量进行唯一性分析,与传统的Khatri-Rao分解方法相比,所提方法具备更为灵活的参数设计特点。仿真实验结果表明,该方法能够在训练块数小于RIS单元数的情况下有效估计反射链路CSI。展开更多
针对稀疏线阵波达方向估计精度较低问题,提出一种稀疏线阵双迭代傅里叶优化方法。基于阵列孔径原理,利用阵列因子与阵元激励间的傅里叶变换关系,构建稀疏线阵构型优化目标函数;提出双迭代傅里叶变换算法,制定合理的旁瓣阈值和旁瓣约束条...针对稀疏线阵波达方向估计精度较低问题,提出一种稀疏线阵双迭代傅里叶优化方法。基于阵列孔径原理,利用阵列因子与阵元激励间的傅里叶变换关系,构建稀疏线阵构型优化目标函数;提出双迭代傅里叶变换算法,制定合理的旁瓣阈值和旁瓣约束条件,依据稀疏率和阵元数将孔径自适应分区,以阵列峰值旁瓣和孔径为约束,由双层嵌套循环迭代优化阵列麦克风数量和位置,获得更低的阵列峰值旁瓣电平。数值仿真和实验结果表明,根据该方法获得的49.5λ孔径、23%稀疏率的稀疏阵列峰值旁瓣电平为-21.59 dB,主瓣宽度为1.03°,角度分辨率为1°,估计误差小于0.01。与其他方法对比,峰值旁瓣低1 d B,优化效率提升50%,由此可证明该方法的有效性和快速性。展开更多
文摘On the basis of the gain-scheduled H∞ design strategy, a novel active fault-tolerant control scheme is proposed. Under the assumption that the effects of faults on the state-space matrices of systems can be of affine parameter dependence, a reconfigurable robust H∞ linear parameter varying controller is developed. The designed controller is a function of the fault effect factors that can be derived online by using a well-trained neural network. To demonstrate the effectiveness of the proposed method, a double inverted pendulum system, with a fault in the motor tachometer loop, is considered.
文摘为解决在双可重构智能超表面(Reconfigurable Intelligent Surface,RIS)系统中获取高维信道状态信息(Channel State Information,CSI)的挑战,提出了一种基于混合张量分解的多链路联合信道估计算法。首先,通过设计导频传输机制,将单反射链路和双反射链路的接收信号分别建模为平行因子模型和平行因子塔克(Tucker)张量模型,将信道估计问题转化为混合张量因子矩阵的拟合问题。然后,考虑到多条链路之间共享的CSI,采用一种基于交替最小二乘迭代算法来分解混合张量,以有效估计出因子矩阵。最后,通过对该混合张量进行唯一性分析,与传统的Khatri-Rao分解方法相比,所提方法具备更为灵活的参数设计特点。仿真实验结果表明,该方法能够在训练块数小于RIS单元数的情况下有效估计反射链路CSI。
文摘针对稀疏线阵波达方向估计精度较低问题,提出一种稀疏线阵双迭代傅里叶优化方法。基于阵列孔径原理,利用阵列因子与阵元激励间的傅里叶变换关系,构建稀疏线阵构型优化目标函数;提出双迭代傅里叶变换算法,制定合理的旁瓣阈值和旁瓣约束条件,依据稀疏率和阵元数将孔径自适应分区,以阵列峰值旁瓣和孔径为约束,由双层嵌套循环迭代优化阵列麦克风数量和位置,获得更低的阵列峰值旁瓣电平。数值仿真和实验结果表明,根据该方法获得的49.5λ孔径、23%稀疏率的稀疏阵列峰值旁瓣电平为-21.59 dB,主瓣宽度为1.03°,角度分辨率为1°,估计误差小于0.01。与其他方法对比,峰值旁瓣低1 d B,优化效率提升50%,由此可证明该方法的有效性和快速性。