期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv5的密集行人检测算法 被引量:3
1
作者 胡倩 皮建勇 +2 位作者 胡伟超 黄昆 王娟敏 《计算机工程》 北大核心 2025年第3期216-228,共13页
针对现有的行人检测方法对于密集行人或小目标行人检测精度低的问题,提出一种基于YOLOv5的综合改进算法模型YOLOv5_Conv-SPD_DAFPN。首先,针对小目标或密集行人的特征信息易丢失这一问题,在骨干网络中引入Conv-SPD网络模块替代原有的跨... 针对现有的行人检测方法对于密集行人或小目标行人检测精度低的问题,提出一种基于YOLOv5的综合改进算法模型YOLOv5_Conv-SPD_DAFPN。首先,针对小目标或密集行人的特征信息易丢失这一问题,在骨干网络中引入Conv-SPD网络模块替代原有的跨步卷积,有效缓解特征信息丢失的问题;其次,针对非相邻特征图不直接融合从而引起特征融合率较低的问题,提出新的双层渐进金字塔网络(DAFPN),提高行人检测的准确性和精度;最后,基于EIoU_Loss和CIoU_Loss引入EfficiCIoU_Loss定位损失函数,以调整和提高帧回归率,促进网络模型更快收敛。模型在CrowdHuman和WiderPerson行人数据集上相比于原YOLOv5模型,mAP@0.5、mAP@0.5∶0.95分别提升了3.9、5.3百分点和2.1、2.1百分点;引入EfficiCIoU_Loss后,模型收敛速度分别提升了11%、33%。这些改进使得基于YOLOv5的密集行人检测在特征信息保留、多尺度融合和损失函数优化等方面都取得了显著进展,提高了其在实际应用中的性能和效率。 展开更多
关键词 密集行人检测 小目标行人检测 Conv-SPD网络 双层渐进特征金字塔网络 EfficiCIoU_Loss损失函数
在线阅读 下载PDF
面向复杂背景环境下垃圾检测的YOLOv8n轻量化改进
2
作者 孙世政 何玲玲 +2 位作者 郑帅 徐向阳 陈仁祥 《电子测量与仪器学报》 北大核心 2025年第2期136-146,共11页
垃圾检测与分类对推动绿色经济和实现低碳循环具有重要意义,面向复杂背景环境的垃圾检测模型存在参数量大、计算成本高等问题,限制了模型在资源受限设备上的应用。为解决上述问题,提出一种轻量化的GCAW-YOLOv8n模型,旨在平衡模型轻量化... 垃圾检测与分类对推动绿色经济和实现低碳循环具有重要意义,面向复杂背景环境的垃圾检测模型存在参数量大、计算成本高等问题,限制了模型在资源受限设备上的应用。为解决上述问题,提出一种轻量化的GCAW-YOLOv8n模型,旨在平衡模型轻量化与精度检测。首先,在YOLOv8n骨干网络中引入GhostNet网络中的C3Ghost和GhostConv模块,有效降低模型参数量;其次,添加上下文锚点注意力机制,增强特征提取能力,提升检测精度;然后,在特征融合阶段,构建渐近特征金字塔网络,提升多尺度目标检测能力;接着,采用WIoU v3边界损失函数优化网络边界框回归性能;最后,结合Taco数据集和人工采集数据集进行了模型验证实验。实验结果表明,相比原YOLOv8n模型,改进后的GCAW-YOLOv8n模型在模型参数量Params和计算量FLOPs分别降低了14.3%和33.3%,而精确度和召回率分别提高了4.4%和1.9%,同时mAP@0.5达到了81.3%,提升了0.7%。改进模型更好地平衡了模型轻量化和检测精度,对模型部署与应用至边缘端检测装备具有重要的工程意义。 展开更多
关键词 垃圾检测 轻量化YOLOv8n GhostNet 上下文锚点注意力机制 渐近特征金字塔
在线阅读 下载PDF
基于渐进特征融合及多尺度空洞注意力的遮挡鸟巢检测
3
作者 尹向雷 屈少鹏 +1 位作者 解永芳 苏妮 《浙江大学学报(工学版)》 北大核心 2025年第3期535-545,共11页
为了提高被遮挡鸟巢目标的检测性能与准确性,减少鸟类筑巢对电力系统稳定运行造成的威胁以及运维成本,提出基于改进YOLOv5的输电线路鸟巢检测方法.该方法使用渐进特征金字塔网络优化原始特征金字塔网络结构,有效避免了非相邻层次之间较... 为了提高被遮挡鸟巢目标的检测性能与准确性,减少鸟类筑巢对电力系统稳定运行造成的威胁以及运维成本,提出基于改进YOLOv5的输电线路鸟巢检测方法.该方法使用渐进特征金字塔网络优化原始特征金字塔网络结构,有效避免了非相邻层次之间较大的语意差距,增强了非相邻层次间的融合效果.使用多尺度空洞注意力机制,使模型能够有效地提取不同尺度的语义信息,提高模型对遮挡鸟巢目标的检测性能.采用轻量级Mobile-NetV3网络作为骨干网络,进一步降低模型复杂度.消融实验与定性实验结果表明,改进后算法的召回率、精确率与平均精度均值相较于原始算法分别提升了2.0个百分点、0.7个百分点与1.7个百分点,权重大小与计算量分别减少了74.7个百分点与53.5个百分点.对于遮挡鸟巢目标均表现出良好的性能,验证了改进方法的有效性. 展开更多
关键词 输电线路 遮挡目标 YOLOv5 注意力机制 渐进特征金字塔网络
在线阅读 下载PDF
改进PSPNet的电成像测井裂缝自动识别 被引量:1
4
作者 申科 肖小玲 +1 位作者 张翔 林茂山 《科学技术与工程》 北大核心 2025年第7期2691-2702,共12页
针对裂缝特征提取困难导致裂缝分割精度低、网络参数量计算量大的问题,提出一种改进的PSPNet(pyramid scene parseing network)网络用于自动识别电成像测井图像中的裂缝。首先将PSPNet中的骨干网络替换为优化的MobileNetV3网络,减少网... 针对裂缝特征提取困难导致裂缝分割精度低、网络参数量计算量大的问题,提出一种改进的PSPNet(pyramid scene parseing network)网络用于自动识别电成像测井图像中的裂缝。首先将PSPNet中的骨干网络替换为优化的MobileNetV3网络,减少网络参数量和计算量;其次,引入渐进特征金字塔(asymptotic feature pyramid network,AFPN),用于增加多尺度信息的交互,增强对细小裂缝的识别能力;接着,引入多深度卷积头转置注意力(multi-depthwise Conv head transposed attention,MDTA)进行全局特征的提取,提升关键信息的提取能力;最后,采用Focal Loss和Dice Loss组合相加作为损失函数,以解决数据集类别占比不平衡的问题。实验结果表明,改进的PSPNet网络对电成像测井裂缝具有较好的分割效果。与PSPNet网络相比,mIoU(mean intersection over union)提升了3.17%,mPA(mean pixel accuracy)提升了6.38%。此外,研究成果的参数量、计算量、权重分别比原模型减少94.3%、95.7%和93.8%。同时,开发了基于CIFLog的裂缝识别系统,该系统能够满足对电成像测井的实际需要。 展开更多
关键词 PSPNet 裂缝识别 电成像测井图像 MobileNetV3 AFPN
在线阅读 下载PDF
Helmet-YOLO:一种更高精度的道路安全头盔检测算法 被引量:3
5
作者 周顺勇 彭梓洋 +3 位作者 张航领 胡琴 陆欢 张宗良 《计算机工程与应用》 北大核心 2025年第2期135-144,共10页
针对现有的道路安全头盔检测算法受背景环境影响较大,面对遮挡以及目标与环境相似等检测场景检测精度不高的问题,从特征融合和损失计算的角度,开发了一种新的Helmet-YOLO架构。利用渐进式特征金字塔网络结构降低多尺度特征融合过程中存... 针对现有的道路安全头盔检测算法受背景环境影响较大,面对遮挡以及目标与环境相似等检测场景检测精度不高的问题,从特征融合和损失计算的角度,开发了一种新的Helmet-YOLO架构。利用渐进式特征金字塔网络结构降低多尺度特征融合过程中存在的巨大语义差距,提升算法在复杂场景下的检测能力。同时,提出的PCAHead检测头和HelmetIoU边界框损失函数优化了模型理解和处理数据的能力,提高了模型损失计算的效率和精度,加速了模型的收敛。实验结果表明,Helmet-YOLOn算法和Helmet-YOLOs算法的mAP@50分别提升了3.7和2.9个百分点,优于实验中的所有同尺度模型,另外Helmet-YOLO的大尺度模型在延迟和精度上也优于多数实验模型。实验证明Helmet-YOLO算法具有更高的精度和鲁棒性,更适合复杂场景的道路安全头盔检测。 展开更多
关键词 头盔检测 Helmet-YOLO 渐进式特征金字塔网络 PCAHead检测头 HelmetIoU
在线阅读 下载PDF
基于YOLOV5s改进的复杂场景下军事目标检测算法 被引量:1
6
作者 孙钿 张意 +2 位作者 韩旭东 夏志禹 汪国平 《弹箭与制导学报》 北大核心 2025年第1期45-52,共8页
针对现有算法特征学习能力欠佳、检测精度不高、计算量大等问题,提出一种基于YOLOV5s改进的多尺度目标检测算法AEM-YOLOV5(AFPN-EMA-MPDIoU-YOLOV5)。首先,在颈部网络引入AFPN渐进特征金字塔网络,以渐进的方式融合图像底层详细信息和顶... 针对现有算法特征学习能力欠佳、检测精度不高、计算量大等问题,提出一种基于YOLOV5s改进的多尺度目标检测算法AEM-YOLOV5(AFPN-EMA-MPDIoU-YOLOV5)。首先,在颈部网络引入AFPN渐进特征金字塔网络,以渐进的方式融合图像底层详细信息和顶层高级语义特征,增强了网络特征融合效果;其次,在每个检测分支前增添EMA注意力机制模块,跨空间聚合像素级特征,提高了复杂场景下对多尺度目标的关注程度;最后,使用MPDIoU替代YOLOV5原有C_(IoU)边界框损失函数,解决了预测框宽高比相同但绝对值不同时C_(IoU)退化的问题,使回归结果更为准确。实验结果表明,改进后算法在RSOD数据集上PmAP50达到94.5%,FPS达到42 frame/s,模型大小为14.8 MB。与现有算法相比,改进后算法性能显著提升,可满足军事目标检测的实时性要求、模型轻便。 展开更多
关键词 军事目标检测 YOLOV5 渐进特征金字塔网络 多尺度目标 注意力机制
在线阅读 下载PDF
基于改进YOLOv5s的风电叶片表面缺陷检测方法
7
作者 王俊 高贵兵 《中国机械工程》 北大核心 2025年第9期2108-2117,共10页
为了提高风电机组叶片健康监测技术的智能化、高效化、便捷化发展,依据目标识别技术提出一种基于改进YOLOv5s算法的风电叶片表面缺陷检测方法。首先将YOLOv5s算法的原始骨干网络用渐进特征金字塔网络(AFPN)替换,增强了网络的学习能力;... 为了提高风电机组叶片健康监测技术的智能化、高效化、便捷化发展,依据目标识别技术提出一种基于改进YOLOv5s算法的风电叶片表面缺陷检测方法。首先将YOLOv5s算法的原始骨干网络用渐进特征金字塔网络(AFPN)替换,增强了网络的学习能力;其次将卷积块注意力模块(CBAM)嵌入到主干提取网络中,提高了模型对叶片表面缺陷特征的提取能力;然后使用最小点距离交并比(MPDIoU)损失函数替换CIoU损失函数,提高了边界框定位精度;最后,采用改进的检测方法对某风电机组叶片进行缺陷检测。检测结果表明,改进后的算法在精确率、召回率和平均精度均值(mAP)等方面分别提高了4.1%、2.9%和4.8%,达到了91.9%、89.3%和93.5%,具有显著的精度优势和更好的模型稳定性。 展开更多
关键词 风电叶片 缺陷检测 渐进特征金字塔网络 卷积块注意力模块
在线阅读 下载PDF
基于改进RT-DETR的路面坑槽检测模型 被引量:3
8
作者 许小伟 陈燕玲 +2 位作者 占柳 漆庆华 邓明星 《武汉科技大学学报》 CAS 北大核心 2024年第6期457-467,共11页
路面坑槽对驾驶的舒适性和安全性有很大影响。针对路面图像中坑槽尺寸小和特征信息匮乏导致检测精度低的问题,提出一种基于RT-DETR的路面坑槽检测模型Pavement Pothole-DETR(PP-DETR)。其主干网络使用SPDRSFE模块进行特征提取,可保留更... 路面坑槽对驾驶的舒适性和安全性有很大影响。针对路面图像中坑槽尺寸小和特征信息匮乏导致检测精度低的问题,提出一种基于RT-DETR的路面坑槽检测模型Pavement Pothole-DETR(PP-DETR)。其主干网络使用SPDRSFE模块进行特征提取,可保留更多特征信息,提高小目标检测精度;引入渐进特征金字塔网络实现特征融合,避免多级传输造成的信息丢失,以解决坑槽特征信息主要集中在中、底特征层的问题;使用结构重参数化模块Conv3XCC3进行特征再提取,在提高网络表达能力的同时又不增加计算量。实验结果显示,相比原RT-DETR模型,PP-DETR的精确率与召回率分别提升了2.9和5.4个百分点,mAP达到76.9%。本文提出的改进方法有效提升了网络的特征提取和特征融合能力,在路面坑槽检测任务上的表现明显优于YOLO系列模型。 展开更多
关键词 目标检测 路面坑槽 改进RT-DETR 渐进特征金字塔网络 结构重参数化
在线阅读 下载PDF
基于跨模态注意力融合的煤炭异物检测方法 被引量:5
9
作者 曹现刚 李虎 +3 位作者 王鹏 吴旭东 向敬芳 丁文韬 《工矿自动化》 CSCD 北大核心 2024年第1期57-65,共9页
为解决原煤智能化洗选过程中煤流中夹杂的异物对比度低、相互遮挡导致异物图像检测时特征提取不充分的问题,提出了一种基于跨模态注意力融合的煤炭异物检测方法。通过引入Depth图像构建RGB图像与Depth图像的双特征金字塔网络(DFPN),采... 为解决原煤智能化洗选过程中煤流中夹杂的异物对比度低、相互遮挡导致异物图像检测时特征提取不充分的问题,提出了一种基于跨模态注意力融合的煤炭异物检测方法。通过引入Depth图像构建RGB图像与Depth图像的双特征金字塔网络(DFPN),采用浅层的特征提取策略提取Depth图像的低级特征,用深度边缘与深度纹理等基础特征辅助RGB图像深层特征,以有效获得2种特征的互补信息,从而丰富异物特征的空间与边缘信息,提高检测精度;构建了基于坐标注意力与改进空间注意力的跨模态注意力融合模块(CAFM),以协同优化并融合RGB特征与Depth特征,增强网络对特征图中被遮挡异物可见部分的关注度,提高被遮挡异物检测精度;使用区域卷积神经网络(R-CNN)输出煤炭异物的分类、回归与分割结果。实验结果表明:在检测精度方面,该方法的AP相较两阶段模型中较优的Mask transfiner高3.9%;在检测效率方面,该方法的单帧检测时间为110.5 ms,能够满足异物检测实时性需求。基于跨模态注意力融合的煤炭异物检测方法能够以空间特征辅助色彩、形状与纹理等特征,准确识别煤炭异物之间及煤炭异物与输送带之间的差异,从而有效提高对复杂特征异物的检测精度,减少误检、漏检现象,实现复杂特征下煤炭异物的精确检测与像素级分割。 展开更多
关键词 煤炭异物检测 实例分割 双特征金字塔网络 跨模态注意力融合 Depth图像 坐标注意力 改进空间注意力
在线阅读 下载PDF
基于双分支特征提取和自适应胶囊网络的DGA域名检测方法 被引量:2
10
作者 杨宏宇 章涛 +2 位作者 张良 成翔 胡泽 《软件学报》 EI CSCD 北大核心 2024年第8期3626-3646,共21页
面向域名生成算法(domain generation algorithm,DGA)的域名检测方法普遍具有特征提取能力弱、特征信息压缩比高等特点,这导致特征信息丢失、特征结构破坏以及域名检测效果较差等诸多不足.针对上述问题,提出一种基于双分支特征提取和自... 面向域名生成算法(domain generation algorithm,DGA)的域名检测方法普遍具有特征提取能力弱、特征信息压缩比高等特点,这导致特征信息丢失、特征结构破坏以及域名检测效果较差等诸多不足.针对上述问题,提出一种基于双分支特征提取和自适应胶囊网络的DGA域名检测方法.首先,通过样本清洗和字典构建重构原始样本并生成重构样本集;其次,通过双分支特征提取网络处理重构样本,在其中,利用切片金字塔网络提取域名局部特征,利用Transformer提取域名全局特征,并利用轻量级注意力融合不同层次的域名特征;然后,利用自适应胶囊网络计算域名特征图的重要度系数,将域名文本特征转换为向量域名特征,并通过特征转移计算基于文本特征的域名分类概率;同时,利用多层感知机处理域名统计特征,以此计算基于统计特征的域名分类概率;最后,通过合并得到的两种不同视角的域名分类概率进行域名检测.大量的实验表明,所提方法在DGA域名检测以及DGA域名家族检测分类方面均取得了当前领先的检测效果.在DGA域名检测中,F1分数提升了0.76%-5.57%;在DGA域名家族检测分类中,F1分数(宏平均)提升了1.79%-3.68%. 展开更多
关键词 DGA域名检测 深度学习 双分支特征提取网络 切片金字塔网络 自适应胶囊网络
在线阅读 下载PDF
改进YOLOv8n的道路目标检测算法 被引量:16
11
作者 高德勇 陈泰达 缪兰 《计算机工程与应用》 CSCD 北大核心 2024年第16期186-197,共12页
针对道路场景中目标尺度多变、复杂背景干扰导致检测精度低、漏检率高的问题,提出一种改进YOLOv8n的道路目标检测算法。引入多样化分支块(diverse branch block,DBB)构建C2fDBB模块,替代原算法中的C2f模块,增强网络多尺度特征提取能力... 针对道路场景中目标尺度多变、复杂背景干扰导致检测精度低、漏检率高的问题,提出一种改进YOLOv8n的道路目标检测算法。引入多样化分支块(diverse branch block,DBB)构建C2fDBB模块,替代原算法中的C2f模块,增强网络多尺度特征提取能力。在路径聚合网络(path aggregation network,PANet)的基础上结合渐进特征金字塔网络(asymptotic feature pyramid network,AFPN)思想,提出PA-AFPN(path aggregation progressive feature pyramid network)特征融合方式,提升网络对多尺度特征的融合能力。设计SPPF2_TA(SPPF with dual-branch structure incorporating triplet attention)模块,通过在SPPF(spatial pyramid pooling fast)中引入平均池化分支和三重注意力机制(triplet attention,TA),有效整合多尺度信息,降低背景干扰对检测的影响。采用MPDIoU作为新边界回归损失函数,替代原损失函数,加速算法收敛,提高目标定位精度。在公开道路目标数据集BDD100K和SODA10M上的实验结果显示,改进方法的mAP@0.5相较于基线算法分别提升了5.7个百分点和7.3个百分点,计算量降低了0.6 GFLOPs。与其他主流目标检测方法相比,改进方法在计算量、FPS和mAP@0.5等方面均展现出显著优势,更加契合道路场景下的目标检测任务需求。 展开更多
关键词 YOLOv8 结构重参数化 渐进特征金字塔网络(AFPN) 道路目标 注意力机制
在线阅读 下载PDF
基于改进YOLOv8n的钢材表面缺陷检测 被引量:5
12
作者 赵洋 王军凯 +2 位作者 林志毅 周忠祥 徐森 《电子测量技术》 北大核心 2024年第13期191-198,共8页
为解决钢材表面缺陷检测中面临的缺陷类型繁多、尺寸差异显著以及现有模型复杂度高、检测精度不足等问题,本文提出了一种基于改进YOLOv8n的检测算法YOLOv8-ODAW。首先,引入全维动态卷积(ODConv)增强对多维度特征的捕捉能力,减少信息损失... 为解决钢材表面缺陷检测中面临的缺陷类型繁多、尺寸差异显著以及现有模型复杂度高、检测精度不足等问题,本文提出了一种基于改进YOLOv8n的检测算法YOLOv8-ODAW。首先,引入全维动态卷积(ODConv)增强对多维度特征的捕捉能力,减少信息损失;其次,嵌入渐进特征金字塔网络(AFPN)改善特征融合过程,实现了非相邻层级特征间的直接交互,有效缓解语义断层。最后,采用动态非单调聚焦机制的Wise-IoUv3损失函数优化边界框回归,加快网络收敛的同时提高检测精度。在NEU-DET数据集上进行多组实验,结果表明,改进后的YOLOv8-ODAW网络模型相比原网络模型mAP50%提升了7.3%、GFLOPs下降了21.95%,展现出对钢材表面缺陷更佳的定位与识别能力,且检测速度满足工业应用需求。 展开更多
关键词 钢材 缺陷检测 YOLOv8n 全维动态卷积 渐进特征金字塔网络 Wise-IoUv3
在线阅读 下载PDF
多尺度渐近特征融合的遥感目标检测算法研究 被引量:1
13
作者 王海群 赵涛 王柄楠 《电光与控制》 CSCD 北大核心 2024年第12期33-40,共8页
针对遥感图像目标尺度多样、小目标密集、背景环境复杂导致检测时出现的漏检及误检等问题,提出一种基于YOLOv8n改进的多尺度渐近特征融合的遥感目标检测算法。首先,构建结合多尺度残差网络的Res2C2f模块,更有效地捕捉不同尺度的特征;其... 针对遥感图像目标尺度多样、小目标密集、背景环境复杂导致检测时出现的漏检及误检等问题,提出一种基于YOLOv8n改进的多尺度渐近特征融合的遥感目标检测算法。首先,构建结合多尺度残差网络的Res2C2f模块,更有效地捕捉不同尺度的特征;其次,设计跨级连接金字塔池化模块来改善原金字塔池化模块特征提取能力不足的问题;然后,重构多尺度的渐近特征融合网络来实现多尺度信息的交换,充分利用不同层级的特征来增强特征融合效果;最后,增加160×160尺寸的小目标检测层,提升模型在密集场景下对小目标的检测效果。在DOTA数据集中,相比基线模型,改进算法的精确率、召回率、平均精度均值分别提升了4.8、4.0和3.7个百分点。 展开更多
关键词 YOLOv8 遥感图像 渐近特征融合 多尺度残差网络 金字塔池化 小目标检测层
在线阅读 下载PDF
基于双金字塔网络的RGB-D群猪图像分割方法 被引量:11
14
作者 高云 廖慧敏 +3 位作者 黎煊 雷明刚 余梅 李小平 《农业机械学报》 EI CAS CSCD 北大核心 2020年第7期36-43,共8页
为实现群养猪的视觉追踪和行为监测,针对猪舍中仔猪因拥挤堆叠等习性而导致的目标个体粘连、图像分割困难问题,提出基于双金字塔网络的RGBD群猪图像分割方法。该方法基于实例分割Mask R-CNN框架,在特征提取网络(ResNet101)基础上改进成... 为实现群养猪的视觉追踪和行为监测,针对猪舍中仔猪因拥挤堆叠等习性而导致的目标个体粘连、图像分割困难问题,提出基于双金字塔网络的RGBD群猪图像分割方法。该方法基于实例分割Mask R-CNN框架,在特征提取网络(ResNet101)基础上改进成双金字塔特征提取网络。RGB图像和Depth图像分别提取特征后进行融合,输入区域生成网络得到预选锚(ROI)和共享特征输入Head网络,通过类别、回归和掩模3个分支,输出检测目标的位置和分类结果,实现猪舍场景下群养仔猪粘连区域的有效个体分割。网络模型训练采用2000组图像样本,按照4∶1比例随机划分训练集和验证集。试验结果表明,双金字塔网络(Feature pyramid networks,FPN)能有效解决颜色相近、个体相似的群猪粘连问题,实现单个仔猪区域的完整分割,分割准确率达89.25%,训练GPU占有率为77.57%,与Mask R-CNN和PigNet网络分割结果相比,分割准确率和分割速度均有较大提高。双金字塔网络模型对于多种行为状态、不同粘连程度的群猪图像中个体分割都取得了良好效果,模型泛化性和鲁棒性较好,为群养猪的个体自动追踪提供了新的途径。 展开更多
关键词 群养猪 RGB-D 双金字塔网络 特征融合 深度学习
在线阅读 下载PDF
复杂场景下的行人跌倒检测算法 被引量:5
15
作者 方可 刘蓉 +2 位作者 魏驰宇 张心月 刘杨 《计算机应用》 CSCD 北大核心 2023年第6期1811-1817,共7页
随着人口老龄化程度的不断深化,跌倒检测成为医疗与健康领域的一个关键问题。针对复杂场景下跌倒检测算法准确率偏低的问题,提出一种改进的跌倒检测模型——PDD-FCOS(PVT DRFPN DIoU-Fully Convolutional One-Stage object detection)... 随着人口老龄化程度的不断深化,跌倒检测成为医疗与健康领域的一个关键问题。针对复杂场景下跌倒检测算法准确率偏低的问题,提出一种改进的跌倒检测模型——PDD-FCOS(PVT DRFPN DIoU-Fully Convolutional One-Stage object detection)。在基准FCOS算法的骨干网络中引入金字塔视觉转换器(PVT),以不增加计算量为前提提取更丰富的语义信息;在特征信息融合阶段插入双重细化特征金字塔网络(DRFPN),更加准确地学习特征图之间采样点的位置和其他信息,并通过上下文信息捕获特征通道之间更准确的语义关系,从而提升检测性能;训练阶段采用距离交并比(DIoU)损失进行边界框回归,通过优化预测框与目标框中心点的距离,使回归框收敛得更快更准确,从而有效提高跌倒检测算法的准确率。实验结果表明,所提模型在开源数据集Fall detection Database上平均精确度均值(mAP)达到82.2%,与基准FCOS算法相比,所提算法的mAP提升了6.4个百分点,且相较于其他主流目标检测算法有精度上的提升以及更好的泛化能力。 展开更多
关键词 目标检测 行人跌倒检测 金字塔视觉转换器 注意力机制 双重细化特征金字塔网络 距离交并比
在线阅读 下载PDF
多分辨率融合输入的U型视网膜血管分割算法 被引量:7
16
作者 梁礼明 詹涛 +2 位作者 雷坤 冯骏 谭卢敏 《电子与信息学报》 EI CSCD 北大核心 2023年第5期1795-1806,共12页
针对视网膜血管拓扑结构不规则、形态复杂和尺度变化多样的特点,该文提出一种多分辨率融合输入的U型网络(MFIU-Net),旨在实现视网膜血管精准分割。设计以多分辨率融合输入为主干的粗略分割网络,生成高分辨率特征。采用改进的ResNeSt代... 针对视网膜血管拓扑结构不规则、形态复杂和尺度变化多样的特点,该文提出一种多分辨率融合输入的U型网络(MFIU-Net),旨在实现视网膜血管精准分割。设计以多分辨率融合输入为主干的粗略分割网络,生成高分辨率特征。采用改进的ResNeSt代替传统卷积,优化血管分割边界特征;将并行空间激活模块嵌入其中,捕获更多的语义和空间信息。构架另一U型精细分割网络,提高模型的微观表示和识别能力。一是底层采用多尺度密集特征金字塔模块提取血管的多尺度特征信息。二是利用特征自适应模块增强粗、细网络之间的特征融合,抑制不相关的背景噪声。三是设计面向细节的双重损失函数融合,以引导网络专注于学习特征。在眼底数据用于血管提取的数字视网膜图像(DRIVE)、视网膜结构分析(STARE)和儿童心脏与健康研究(CHASE_DB1)上进行实验,其准确率分别为97.00%,97.47%和97.48%,灵敏度分别为82.73%,82.86%和83.24%,曲线下的面积(AUC)值分别为98.74%,98.90%和98.93%。其模型整体性能优于现有算法。 展开更多
关键词 视网膜血管分割 U型网络 并行空间激活模块 多尺度密集特征金字塔模块 双重损失函数融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部