In this paper, we discuss the parallel domain decomposition method(DDM)for solving PDE's on parallel computers. Three types of DDM: DDM with overlapping, DDM without overlapping and DDM with fictitious component a...In this paper, we discuss the parallel domain decomposition method(DDM)for solving PDE's on parallel computers. Three types of DDM: DDM with overlapping, DDM without overlapping and DDM with fictitious component are discussed in a uniform framework. The eonvergence of the asynchronous parallel algorithms based on DDM are discussed.展开更多
To study the domain decomposition algorithms for the equations of elliptic type, the method of optimal boundary control was used to advance a new procedure for domain decomposition algorithms and regularization method...To study the domain decomposition algorithms for the equations of elliptic type, the method of optimal boundary control was used to advance a new procedure for domain decomposition algorithms and regularization method to deal with the ill posedness of the control problem. The determination of the value of the solution of the partial differential equation on the interface——the key of the domain decomposition algorithms——was transformed into a boundary control problem and the ill posedness of the control problem was overcome by regularization. The convergence of the regularizing control solution was proven and the equations which characterize the optimal control were given therefore the value of the unknown solution on the interface of the domain would be obtained by solving a series of coupling equations. Using the boundary control method the domain decomposion algorithm can be carried out.展开更多
In this paper,we establish a new algorithm to the non-overlapping Schwarz domain decomposition methods with changing transmission conditions for solving one dimensional advection reaction diffusion problem.More precis...In this paper,we establish a new algorithm to the non-overlapping Schwarz domain decomposition methods with changing transmission conditions for solving one dimensional advection reaction diffusion problem.More precisely,we first describe the new algorithm and prove the convergence results under several natural assumptions on the sequences of parameters which determine the transmission conditions.Then we give a simple method to estimate the new value of parameters in each iteration.The interesting advantage of our method is that one may update the better parameters in each iteration to save the computational cost for optimizing the parameters after many steps.Finally some numerical experiments are performed to show the behavior of the convergence rate for the new method.展开更多
基金The project supported by National Natural Science Fundation of China.
文摘In this paper, we discuss the parallel domain decomposition method(DDM)for solving PDE's on parallel computers. Three types of DDM: DDM with overlapping, DDM without overlapping and DDM with fictitious component are discussed in a uniform framework. The eonvergence of the asynchronous parallel algorithms based on DDM are discussed.
文摘To study the domain decomposition algorithms for the equations of elliptic type, the method of optimal boundary control was used to advance a new procedure for domain decomposition algorithms and regularization method to deal with the ill posedness of the control problem. The determination of the value of the solution of the partial differential equation on the interface——the key of the domain decomposition algorithms——was transformed into a boundary control problem and the ill posedness of the control problem was overcome by regularization. The convergence of the regularizing control solution was proven and the equations which characterize the optimal control were given therefore the value of the unknown solution on the interface of the domain would be obtained by solving a series of coupling equations. Using the boundary control method the domain decomposion algorithm can be carried out.
文摘In this paper,we establish a new algorithm to the non-overlapping Schwarz domain decomposition methods with changing transmission conditions for solving one dimensional advection reaction diffusion problem.More precisely,we first describe the new algorithm and prove the convergence results under several natural assumptions on the sequences of parameters which determine the transmission conditions.Then we give a simple method to estimate the new value of parameters in each iteration.The interesting advantage of our method is that one may update the better parameters in each iteration to save the computational cost for optimizing the parameters after many steps.Finally some numerical experiments are performed to show the behavior of the convergence rate for the new method.