期刊文献+
共找到1,164篇文章
< 1 2 59 >
每页显示 20 50 100
Multi-objective optimization of stamping forming process of head using Pareto-based genetic algorithm 被引量:10
1
作者 周杰 卓芳 +1 位作者 黄磊 罗艳 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3287-3295,共9页
To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based gen... To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based genetic algorithm was applied to optimizing the head stamping forming process. In the proposed optimal model, fracture, wrinkle and thickness varying are a function of several factors, such as fillet radius, draw-bead position, blank size and blank-holding force. Hence, it is necessary to investigate the relationship between the objective functions and the variables in order to make objective functions varying minimized simultaneously. Firstly, the central composite experimental(CCD) with four factors and five levels was applied, and the experimental data based on the central composite experimental were acquired. Then, the response surface model(RSM) was set up and the results of the analysis of variance(ANOVA) show that it is reliable to predict the fracture, wrinkle and thickness varying functions by the response surface model. Finally, a Pareto-based genetic algorithm was used to find out a set of Pareto front, which makes fracture, wrinkle and thickness varying minimized integrally. A head stamping case indicates that the present method has higher precision and practicability compared with the "trial and error" procedure. 展开更多
关键词 stamping forming HEADS finite element analysis central composite experimental design response surface methodology multi-objective genetic algorithm
在线阅读 下载PDF
Distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm 被引量:4
2
作者 Yaozhong Zhang Lei Zhang Zhiqiang Du 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1236-1243,共8页
A distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple... A distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple decision-makers (DMs) can collaboratively solve the tasks-platforms allocation scheduling problems dynamically through the coordinator. This methodo- logy combined with NGA maximizes tasks execution accuracy, also minimizes the weighted total workload of the DM which is measured in terms of intra-DM and inter-DM coordination. The intra-DM employs an optimization-based scheduling algorithm to match the tasks-platforms assignment request with its own platforms. The inter-DM coordinates the exchange of collaborative request information and platforms among DMs using the blackboard architecture. The numerical result shows that the proposed black- board DM framework based on NGA can obtain a near-optimal solution for the tasks-platforms collaborative planning problem. The assignment of platforms-tasks and the patterns of coordination can achieve a nice trade-off between intra-DM and inter-DM coordination workload. 展开更多
关键词 distributed collaborative planning BLACKBOARD decision maker (DM) nested genetic algorithm (NGA).
在线阅读 下载PDF
Performance optimization of electric power steering based on multi-objective genetic algorithm 被引量:2
3
作者 赵万忠 王春燕 +1 位作者 于蕾艳 陈涛 《Journal of Central South University》 SCIE EI CAS 2013年第1期98-104,共7页
The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-obj... The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-objective genetic algorithm (GA) was designed. Based on the model of system, the quantitative formula of the road feel, sensitivity, and operation stability of the steering were induced. Considering the road feel and sensitivity of steering as optimization objectives, and the operation stability of steering as constraint, the multi-objective GA was proposed and the system parameters were optimized. The simulation results show that the system optimized by multi-objective genetic algorithm has better road feel, steering sensibility and steering stability. The energy of steering road feel after optimization is 1.44 times larger than the one before optimization, and the energy of portability after optimization is 0.4 times larger than the one before optimization. The ground test was conducted in order to verify the feasibility of simulation results, and it is shown that the pure electric bus equipped with the recirculating ball-type EPS system can provide better road feel and better steering portability for the drivers, thus the optimization methods can provide a theoretical basis for the design and optimization of the recirculating ball-type EPS system. 展开更多
关键词 vehicle engineering electric power steering multi-objective optimization genetic algorithm
在线阅读 下载PDF
Distributed genetic algorithm for optimal planar arrays of aperture synthesis telescope
4
作者 贺小箭 唐新怀 +1 位作者 尤晋元 文建国 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第3期419-425,共7页
Sparse arrays of telescopes have a limited (u, v)-plane coverage. In this paper, an optimization method for designing planar arrays of an aperture synthesis telescope is proposed that is based on distributed genetic a... Sparse arrays of telescopes have a limited (u, v)-plane coverage. In this paper, an optimization method for designing planar arrays of an aperture synthesis telescope is proposed that is based on distributed genetic algorithm. This distributed genetic algorithm is implemented on a network of workstations using community communication model. Such an aperture synthesis system performs with imperfection of (u, v) components caused by deviations and(or) some missing baselines. With the maximum (u, v)-plane coverage of this rotation-optimized array, the image of the source reconstructed by inverse Fourier transform is satisfactory. 展开更多
关键词 distributed genetic algorithm optical aperture synthesis optimum planar array (u v) -spectrum sampling.
在线阅读 下载PDF
Application of camera calibrating model to space manipulator with multi-objective genetic algorithm
5
作者 王中宇 江文松 王岩庆 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1937-1943,共7页
The multi-objective genetic algorithm(MOGA) is proposed to calibrate the non-linear camera model of a space manipulator to improve its locational accuracy. This algorithm can optimize the camera model by dynamic balan... The multi-objective genetic algorithm(MOGA) is proposed to calibrate the non-linear camera model of a space manipulator to improve its locational accuracy. This algorithm can optimize the camera model by dynamic balancing its model weight and multi-parametric distributions to the required accuracy. A novel measuring instrument of space manipulator is designed to orbital simulative motion and locational accuracy test. The camera system of space manipulator, calibrated by MOGA algorithm, is used to locational accuracy test in this measuring instrument. The experimental result shows that the absolute errors are [0.07, 1.75] mm for MOGA calibrating model, [2.88, 5.95] mm for MN method, and [1.19, 4.83] mm for LM method. Besides, the composite errors both of LM method and MN method are approximately seven times higher that of MOGA calibrating model. It is suggested that the MOGA calibrating model is superior both to LM method and MN method. 展开更多
关键词 space manipulator camera calibration multi-objective genetic algorithm orbital simulation and measurement
在线阅读 下载PDF
Analysis of Distributed and Adaptive Genetic Algorithm for Mining Interesting Classification Rules
6
作者 YI Yunfei LIN Fang QIN Jun 《现代电子技术》 2008年第10期132-135,138,共5页
Distributed genetic algorithm can be combined with the adaptive genetic algorithm for mining the interesting and comprehensible classification rules.The paper gives the method to encode for the rules,the fitness funct... Distributed genetic algorithm can be combined with the adaptive genetic algorithm for mining the interesting and comprehensible classification rules.The paper gives the method to encode for the rules,the fitness function,the selecting,crossover,mutation and migration operator for the DAGA at the same time are designed. 展开更多
关键词 分析方法 分类规则 计算方法 编码 智能系统
在线阅读 下载PDF
Exponential distribution-based genetic algorithm for solving mixed-integer bilevel programming problems 被引量:4
7
作者 Li Hecheng Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第6期1157-1164,共8页
Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's f... Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's functions are convex if the follower's variables are not restricted to integers. A genetic algorithm based on an exponential distribution is proposed for the aforementioned problems. First, for each fixed leader's variable x, it is proved that the optimal solution y of the follower's mixed-integer programming can be obtained by solving associated relaxed problems, and according to the convexity of the functions involved, a simplified branch and bound approach is given to solve the follower's programming for the second class of problems. Furthermore, based on an exponential distribution with a parameter λ, a new crossover operator is designed in which the best individuals are used to generate better offspring of crossover. The simulation results illustrate that the proposed algorithm is efficient and robust. 展开更多
关键词 mixed-integer nonlinear bilevel programming genetic algorithm exponential distribution optimalsolutions
在线阅读 下载PDF
Solving material distribution routing problem in mixed manufacturing systems with a hybrid multi-objective evolutionary algorithm 被引量:7
8
作者 高贵兵 张国军 +2 位作者 黄刚 朱海平 顾佩华 《Journal of Central South University》 SCIE EI CAS 2012年第2期433-442,共10页
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency... The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II. 展开更多
关键词 material distribution routing problem multi-objective optimization evolutionary algorithm local search
在线阅读 下载PDF
The Distribution Population-based Genetic Algorithm for Parameter Optimization PID Controller 被引量:8
9
作者 CHENQing-Geng WANGNing HUANGShao-Feng 《自动化学报》 EI CSCD 北大核心 2005年第4期646-650,共5页
Enlightened by distribution of creatures in natural ecology environment, the distributionpopulation-based genetic algorithm (DPGA) is presented in this paper. The searching capability ofthe algorithm is improved by co... Enlightened by distribution of creatures in natural ecology environment, the distributionpopulation-based genetic algorithm (DPGA) is presented in this paper. The searching capability ofthe algorithm is improved by competition between distribution populations to reduce the search zone.This method is applied to design of optimal parameters of PID controllers with examples, and thesimulation results show that satisfactory performances are obtained. 展开更多
关键词 遗传算法 PID控制器 优化设计 参数设置
在线阅读 下载PDF
Multi-objective planning model for simultaneous reconfiguration of power distribution network and allocation of renewable energy resources and capacitors with considering uncertainties 被引量:9
10
作者 Sajad Najafi Ravadanegh Mohammad Reza Jannati Oskuee Masoumeh Karimi 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1837-1849,共13页
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a... This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration. 展开更多
关键词 optimal reconfiguration renewable energy resources sitting and sizing capacitor allocation electric distribution system uncertainty modeling scenario based-stochastic programming multi-objective genetic algorithm
在线阅读 下载PDF
Multi-objective optimization of active steering system with force and displacement coupled control 被引量:4
11
作者 赵万忠 孙培坤 +1 位作者 刘顺 林逸 《Journal of Central South University》 SCIE EI CAS 2012年第4期974-981,共8页
A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the nov... A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the novel AFS system and the vehicle three-degree of freedom system,the concept and quantitative formulas of the novel AFS system steering performance were proposed.The steering road feel and steering portability were set as the optimizing targets with the steering stability and steering portability as the constraint conditions.According to the features of constrained optimization of multi-variable function,a multi-variable genetic algorithm for the system parameter optimization was designed.The simulation results show that based on parametric optimization of the multi-objective genetic algorithm,the novel AFS system can improve the steering road feel,steering portability and steering stability,thus the optimization method can provide a theoretical basis for the design and optimization of the novel AFS system. 展开更多
关键词 vehicle engineering active steering electric power steering multi-objective genetic algorithm
在线阅读 下载PDF
Multi-objective design optimization of composite submerged cylindrical pressure hull for minimum buoyancy and maximum buckling load capacity 被引量:3
12
作者 Muhammad Imran Dong-yan Shi +3 位作者 Li-li Tong Ahsan Elahi Hafiz Muhammad Waqas Muqeem Uddin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1190-1206,共17页
This paper presents the design optimization of composite submersible cylindrical pressure hull subjected to 3 MPa hydrostatic pressure.The design optimization study is conducted for cross-ply layups[0_(s)/90_(t)/0_(u)... This paper presents the design optimization of composite submersible cylindrical pressure hull subjected to 3 MPa hydrostatic pressure.The design optimization study is conducted for cross-ply layups[0_(s)/90_(t)/0_(u)],[0_(s)/90_(t)/0_(u)]s,[0_(s)/90_(t)]s and[90_(s)/0_(t)]s considering three uni-directional composites,i.e.Carbon/Epoxy,Glass/Epoxy,and Boron/Epoxy.The optimization study is performed by coupling a Multi-Objective Genetic Algorithm(MOGA)and Analytical Analysis.Minimizing the buoyancy factor and maximizing the buckling load factor are considered as the objectives of the optimization study.The objectives of the optimization are achieved under constraints on the Tsai-Wu,Tsai-Hill and Maximum Stress composite failure criteria and on buckling load factor.To verify the optimization approach,optimization of one particular layup configuration is also conducted in ANSYS with the same objectives and constraints. 展开更多
关键词 multi-objective genetic algorithm Optimization Composite submersible pressure hull Thin shell Material failure Shell buckling
在线阅读 下载PDF
Overview of multi-objective optimization methods 被引量:2
13
作者 LeiXiujuan ShiZhongke 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第2期142-146,共5页
To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description ab... To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description about multi-objective (MO) optimization are introduced. Then some definitions and related terminologies are given. Furthermore several MO optimization methods including classical and current intelligent methods are discussed one by one succinctly. Finally evaluations on advantages and disadvantages about these methods are made at the end of the paper. 展开更多
关键词 multi-objective optimization objective function Pareto optimality genetic algorithms simulated annealing fuzzy logical.
在线阅读 下载PDF
NSGA Ⅱ based multi-objective homing trajectory planning of parafoil system 被引量:1
14
作者 陶金 孙青林 +1 位作者 陈增强 贺应平 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3248-3255,共8页
Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a ki... Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system. 展开更多
关键词 parafoil system homing trajectory planning multi-objective optimization non-dominated sorting genetic algorithm(NSGA) non-uniform b-spline
在线阅读 下载PDF
Fuzzy-GA based algorithm for optimal placement and sizing of distribution static compensator (DSTATCOM) for loss reduction of distribution network considering reconfiguration 被引量:1
15
作者 Mohammad Mohammadi Mahyar Abasi A.Mohammadi Rozbahani 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第2期245-258,共14页
This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devic... This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devices and the cost of system operation, namely, energy loss cost due to both reconfiguration and DSTATCOM placement, are combined to form the objective function to be minimized. The distribution system tie switches, DSTATCOM location and size have been optimally determined to obtain an appropriate operational condition. In the proposed approach, the fuzzy membership function of loss sensitivity is used for the selection of weak nodes in the power system for the placement of DSTATCOM and the optimal parameter settings of the DFACTS device along with optimal selection of tie switches in reconfiguration process are governed by genetic algorithm(GA). Simulation results on IEEE 33-bus and IEEE 69-bus test systems concluded that the combinatorial method using DSTATCOM and reconfiguration is preferable to reduce power losses to 34.44% for 33-bus system and to 45.43% for 69-bus system. 展开更多
关键词 distribution FACTS (DFACTS) distribution static compensator (DSTATCOM) network reconfiguration genetic algorithm fuzzy membership function power loss reduction
在线阅读 下载PDF
Optimal antenna placement in distributed antenna systems
16
作者 Zhongzhao Zhang Zhun Ye Weilin Jiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第4期467-472,共6页
To minimize the outage probability of the cell (OPC) in downlink distributed antenna systems with selection transmission, a complex-encoding genetic algorithm (GA) is proposed to find the optimal locations of the ... To minimize the outage probability of the cell (OPC) in downlink distributed antenna systems with selection transmission, a complex-encoding genetic algorithm (GA) is proposed to find the optimal locations of the antenna elements (AEs). First, the outage probability at a fixed location in the cell is investigated. Next, an analytical expression of the OPC is derived, which is a function of the AE locations. Then the OPC is used as the objective function of the antenna placement optimization problem, and the complex- encoding GA is used to find the optimal AE locations in the cell. Numerical results show that the optimal AE locations are symmetric about the cell center, and the outage probability contours are also given with the optimal antenna placement. The algorithm has a good convergence and can also be used to determine the number of AEs which should be installed in order to satisfy the certain OPC value. Lastly, verification of the OPC's analytical expression is carried out by Monte Carlo simulations. The OPC with optimal AE locations is about 10% lower than the values with completely random located AEs. 展开更多
关键词 distributed antenna system (DAS) outage probability genetic algorithm (GA).
在线阅读 下载PDF
Multi-objective Function Optimization for Environmental Control of a Greenhouse Based on a RBF and NSGA-Ⅱ
17
作者 Zhou Xiu-li Liu Ming-wei +3 位作者 Wang Ling Xu Xiao-chuan Chen Gang Wang De-fu 《Journal of Northeast Agricultural University(English Edition)》 CAS 2021年第1期75-89,共15页
To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solve... To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱ could well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively. 展开更多
关键词 greenhouse temperature multi-objective optimization radial-basis function(RBF) non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ)
在线阅读 下载PDF
面向防疫物资分区配送车机协同路径规划问题 被引量:2
18
作者 马华伟 闫伯英 《系统仿真学报》 北大核心 2025年第1期234-244,共11页
针对目前防疫物资车机协同配送中没有满足疫区无接触配送需求的问题,提出车机协同分区配送问题。以最短配送时间作为优化目标,建立线性规划模型,并提出一种两阶段启发式算法,其中第一阶段通过贪婪算法生成初始解,第二阶段设计了一种混... 针对目前防疫物资车机协同配送中没有满足疫区无接触配送需求的问题,提出车机协同分区配送问题。以最短配送时间作为优化目标,建立线性规划模型,并提出一种两阶段启发式算法,其中第一阶段通过贪婪算法生成初始解,第二阶段设计了一种混合遗传算法(tabu search algorithm with genetic algorithm,TSGA),将禁忌搜索算法思想与遗传算法相结合进行求解,通过引入禁忌表与节点交换算子和节点变异算子,改进了染色体方式,提升了算法的求解性能。实验结果表明,TSGA与基于遗传思想的自适应算法以及混合禁忌模拟退火算法对比,其解质量与求解时间均优。综上,该两阶段算法能够有效解决VRPD-ZD问题,提升防疫物资车机协同配送效率。 展开更多
关键词 车机协同 分区配送 防疫物资配送 两阶段启发式算法 遗传算法
在线阅读 下载PDF
基于水力响应时间的灌区实时渠系优化配水模型
19
作者 张运鑫 郭邦 +3 位作者 樊煜 高占义 杨芸 刘洁 《节水灌溉》 北大核心 2025年第5期39-44,50,共7页
在实际情况中灌区配水条件不是一成不变的,灌区供水流量的变化以及水流运动时间的大小对配水方案的制定和渠道精准配水有着重要影响,因此需要建立相应的模型进行优化渠系配水。考虑到灌区供水流量实时变化以及水流运动时间对配水方案的... 在实际情况中灌区配水条件不是一成不变的,灌区供水流量的变化以及水流运动时间的大小对配水方案的制定和渠道精准配水有着重要影响,因此需要建立相应的模型进行优化渠系配水。考虑到灌区供水流量实时变化以及水流运动时间对配水方案的影响,建立了基于水力响应时间的实时优化配水模型。当供水流量变大或变小时,模型提供2种配水方式:方式1为优先调节流量,再调节配水渠道数量;方式2为增加或减少下级配水渠道的数量。模型以各配水支渠的配水流量、开始配水时间和结束配水时间为决策变量,以配水历时最短和渠道输水损失最小为目标函数,通过精英策略的非支配排序遗传算法(NSGA-Ⅱ)进行求解。结果表明:2种方式的配水流量均在流量上下限之间,满足配水要求,响应时间的计算提供了更精准的配水时间;方式1可以保证所有渠道不间断配水,但出现了部分渠道配水流量较小的情况,配水历时为128.66 h;方式2中所有渠道均大流量配水,且配水流量大小能保持稳定,配水历时为122.13 h,但部分渠道会中断配水。水力响应时间的灌区实时渠系优化配水模型能够在供水流量变化时提供配水方案,方式1比方式2的配水流量波动大,渠道输水损失大,且配水时间多6.54 h。2种方式都考虑了水力响应时间对配水方案的影响,从而增加配水时间的准确性,可为灌区的配水工作提供指导。 展开更多
关键词 渠系配水 水力响应时间 优化配水模型 遗传算法 实时配水
在线阅读 下载PDF
考虑交通拥堵的冷链配送路径动态优化
20
作者 曹菁菁 魏杰 +3 位作者 雷阿会 韩鹏 冯子立 王梦简 《计算机应用研究》 北大核心 2025年第8期2364-2373,共10页
针对交通流的不确定性和难预知性导致的交通拥堵,从而影响冷链配送效率的问题,提出考虑交通拥堵的带时间窗的冷链车辆路径问题,建立了0-1整数规划模型;然后,利用变交叉操作和自适应扰动因子对免疫遗传算法(IGA)进行改进,提出基于变交叉... 针对交通流的不确定性和难预知性导致的交通拥堵,从而影响冷链配送效率的问题,提出考虑交通拥堵的带时间窗的冷链车辆路径问题,建立了0-1整数规划模型;然后,利用变交叉操作和自适应扰动因子对免疫遗传算法(IGA)进行改进,提出基于变交叉下降的免疫遗传算法(VCD-IGA);最后,利用某生鲜企业配送过程中的实际配送数据和交通流数据进行实验。实验通过自主搭建的信息系统进行数据交互,并通过VCD-IGA对配送路径进行实时动态优化。实验表明,相较于静态决策,提出的动态决策使得配送总成本降低29.6%,平均物流服务水平提升18%。 展开更多
关键词 冷链配送 免疫遗传算法 动态决策 交通拥堵
在线阅读 下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部