After excavation,some of the surrounding rock mass is in a state of triaxial extension,exhibiting tensile or shear fracture modes.To study the energy mechanism of tensile fracture turning to shear fracture,a series of...After excavation,some of the surrounding rock mass is in a state of triaxial extension,exhibiting tensile or shear fracture modes.To study the energy mechanism of tensile fracture turning to shear fracture,a series of triaxial extension tests were conducted on sandstone under confining pressures of 10,30,50 and 70 MPa.Elastic energy and dissipated energy were separated by single unloading,the input energy u_(t),elastic energy u_(e),and dissipated energy u_(d)at different unloading stress levels were calculated by the integrating stress−strain curves.The results show that tensile cracks dominate fracture under lower confining pressure(10 MPa),and shear cracks play an increasingly important role in fracture as confining pressure increases(30,50 and 70 MPa).Based on the phenomenon that u_(e)and u_(d)increase linearly with increasing u_(t),a possible energy distribution mechanism of fracture mode transition under triaxial extension was proposed.In addition,it was found that peak energy storage capacity is more sensitive to confining pressure compared to elastic energy conversion capacity.展开更多
Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static ...Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static experiments were conducted to systematically investigate the mechanical response of metal-wrapped microporous materials under impact loading that spanned 10~6 orders of magnitude.By combining a high-precision numerical model with a spatial contact point search algorithm,the spatio–temporal contact characteristics of the complex network structure in FMP-MR were systematically analyzed.Furthermore,the mapping mechanism from turn topology and mesoscopic friction behavior to macroscopic mechanical properties was comprehensively explored.The results showed that compared with quasi-static loading,FMP-MR under high-speed impact exhibited higher energy absorption efficiency due to high-strain-rate inertia effect.Therefore,the peak stress increased by 141%,and the maximum energy dissipation increased by 300%.Consequently,the theory of dynamic friction locking effect was innovatively proposed.The theory explains that the close synergistic effect of sliding friction and plastic dissipation promoted by the stable interturn-locked embedded structure is the essential reason for the excellent dynamic mechanical properties of FMP-MR under dynamic loading conditions.Briefly,based on the in-depth investigation of the mechanical response and energy dissipation mechanism of FMP-MR under impact loads,this study provides a solid theoretical basis for further expanding the application range of FMP-MR and optimizing its performance.展开更多
This article is concerned with the problem of robust dissipative filtering for continuous-time polytopic uncertain neutral systems. The main purpose is to obtain a stable and proper linear filter such that the filteri...This article is concerned with the problem of robust dissipative filtering for continuous-time polytopic uncertain neutral systems. The main purpose is to obtain a stable and proper linear filter such that the filtering error system is strictly dissipative. A new criterion for the dissipativity of neutral systems is first provided in terms of linear matrix inequalities (LMI). Then, an LMI sufficient condition for the existence of a robust filter is established and a design procedure is proposed for this type of systems. Two numerical examples are given. One illustrates the less conservativeness of the proposed criterion; the other demonstrates the validity of the filtering design procedure.展开更多
A robust dissipative control problem for a class of It-type stochastic systems is discussed with Markovian jumping parameters and time-varying delay. A memoryless state feedback dissipative controller is developed bas...A robust dissipative control problem for a class of It-type stochastic systems is discussed with Markovian jumping parameters and time-varying delay. A memoryless state feedback dissipative controller is developed based on Lyapunov-Krasovskii functional approach such that the closed-loop system is robustly stochastically stable and weakly delay-dependent (RSSWDD) and strictly (Q, S, R)-dissipative. The sufficient condition on the existence of state feedback dissipative controller is presented by linear matrix inequality (LMI). And the desired controller can be concluded as solving a set of LMI. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed approach.展开更多
Dilatancy is a fundamental volumetric growth behavior observed during loading and serves as a key index to comprehending the intricate nonlinear behavior and constitutive equation structure of rock.This study focuses ...Dilatancy is a fundamental volumetric growth behavior observed during loading and serves as a key index to comprehending the intricate nonlinear behavior and constitutive equation structure of rock.This study focuses on Jinping marble obtained from the Jinping Underground Laboratory in China at a depth of 2400 m.Various uniaxial and triaxial tests at different strain rates,along with constant confining pressure tests and reduced confining pressure tests under different confining pressures were conducted to analyze the mechanical response and dilatancy characteristics of the marble under four stress paths.Subsequently,a new empirical dilatancy coefficient is proposed based on the energy dissipation method.The results show that brittle failure characteristics of marble under uniaxial compression are more obvious with the strain rate increasing,and plastic failure characteristics of marble under triaxial compression are gradually strengthened.Furthermore,compared to the constant confining pressure,the volume expansion is relatively lower under unloading condition.The energy dissipation is closely linked to the process of dilatancy,with a rapid increase of dissipated energy coinciding with the beginning of dilatancy.A new empirical dilatancy coefficient is defined according to the change trend of energy dissipation rate curve,of which change trend is consistent with the actual dilatancy response in marble under different stress paths.The existing empirical and theoretical dilatancy models are analyzed,which shows that the empirical dilatancy coefficient based on the energy background is more universal.展开更多
基金Project(52074352)supported by the National Natural Science Foundation of ChinaProject(2023JJ30680)supported by the National Science and Technology Major Project of China。
文摘After excavation,some of the surrounding rock mass is in a state of triaxial extension,exhibiting tensile or shear fracture modes.To study the energy mechanism of tensile fracture turning to shear fracture,a series of triaxial extension tests were conducted on sandstone under confining pressures of 10,30,50 and 70 MPa.Elastic energy and dissipated energy were separated by single unloading,the input energy u_(t),elastic energy u_(e),and dissipated energy u_(d)at different unloading stress levels were calculated by the integrating stress−strain curves.The results show that tensile cracks dominate fracture under lower confining pressure(10 MPa),and shear cracks play an increasingly important role in fracture as confining pressure increases(30,50 and 70 MPa).Based on the phenomenon that u_(e)and u_(d)increase linearly with increasing u_(t),a possible energy distribution mechanism of fracture mode transition under triaxial extension was proposed.In addition,it was found that peak energy storage capacity is more sensitive to confining pressure compared to elastic energy conversion capacity.
基金National Natural Science Foundation of China-NSAF(Grant No.U2330202)the National Natural Science Foundation of China(Grant Nos.52175162 and 51805086)+1 种基金Fujian Provincial Technological Innovation Key Research and Industrialization Projects(Grant Nos.2023XQ005 and 2024XQ010)The National Independent Innovation Demonstration Platform Project of Fujian Province(2024QZFX07)。
文摘Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static experiments were conducted to systematically investigate the mechanical response of metal-wrapped microporous materials under impact loading that spanned 10~6 orders of magnitude.By combining a high-precision numerical model with a spatial contact point search algorithm,the spatio–temporal contact characteristics of the complex network structure in FMP-MR were systematically analyzed.Furthermore,the mapping mechanism from turn topology and mesoscopic friction behavior to macroscopic mechanical properties was comprehensively explored.The results showed that compared with quasi-static loading,FMP-MR under high-speed impact exhibited higher energy absorption efficiency due to high-strain-rate inertia effect.Therefore,the peak stress increased by 141%,and the maximum energy dissipation increased by 300%.Consequently,the theory of dynamic friction locking effect was innovatively proposed.The theory explains that the close synergistic effect of sliding friction and plastic dissipation promoted by the stable interturn-locked embedded structure is the essential reason for the excellent dynamic mechanical properties of FMP-MR under dynamic loading conditions.Briefly,based on the in-depth investigation of the mechanical response and energy dissipation mechanism of FMP-MR under impact loads,this study provides a solid theoretical basis for further expanding the application range of FMP-MR and optimizing its performance.
基金supported by the Major Program of National Natural Science Foundation of China(60710002)the Program for Changjiang Scholars and Innovative Research Team in University.
文摘This article is concerned with the problem of robust dissipative filtering for continuous-time polytopic uncertain neutral systems. The main purpose is to obtain a stable and proper linear filter such that the filtering error system is strictly dissipative. A new criterion for the dissipativity of neutral systems is first provided in terms of linear matrix inequalities (LMI). Then, an LMI sufficient condition for the existence of a robust filter is established and a design procedure is proposed for this type of systems. Two numerical examples are given. One illustrates the less conservativeness of the proposed criterion; the other demonstrates the validity of the filtering design procedure.
基金supported in part by the National Natural Science Foundation of China (60874045 60904030)+1 种基金the Foundation of the Education Bureau of Jiangsu Province (09KJB510019)the Natural Science Foundation of Jiangsu Province (BK2009184)
文摘A robust dissipative control problem for a class of It-type stochastic systems is discussed with Markovian jumping parameters and time-varying delay. A memoryless state feedback dissipative controller is developed based on Lyapunov-Krasovskii functional approach such that the closed-loop system is robustly stochastically stable and weakly delay-dependent (RSSWDD) and strictly (Q, S, R)-dissipative. The sufficient condition on the existence of state feedback dissipative controller is presented by linear matrix inequality (LMI). And the desired controller can be concluded as solving a set of LMI. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed approach.
基金Project(2022NSFSC0279)supported by the General Project of Sichuan Natural Science Foundation,ChinaProject(Z17113)supported by the Key Scientific Research Fund of Xihua University,ChinaProject(SR21A04)supported by the Research Center for Social Development and Social Risk Control of Sichuan Province,Key Research Base of Philosophy and Social Sciences,Sichuan University,China。
文摘Dilatancy is a fundamental volumetric growth behavior observed during loading and serves as a key index to comprehending the intricate nonlinear behavior and constitutive equation structure of rock.This study focuses on Jinping marble obtained from the Jinping Underground Laboratory in China at a depth of 2400 m.Various uniaxial and triaxial tests at different strain rates,along with constant confining pressure tests and reduced confining pressure tests under different confining pressures were conducted to analyze the mechanical response and dilatancy characteristics of the marble under four stress paths.Subsequently,a new empirical dilatancy coefficient is proposed based on the energy dissipation method.The results show that brittle failure characteristics of marble under uniaxial compression are more obvious with the strain rate increasing,and plastic failure characteristics of marble under triaxial compression are gradually strengthened.Furthermore,compared to the constant confining pressure,the volume expansion is relatively lower under unloading condition.The energy dissipation is closely linked to the process of dilatancy,with a rapid increase of dissipated energy coinciding with the beginning of dilatancy.A new empirical dilatancy coefficient is defined according to the change trend of energy dissipation rate curve,of which change trend is consistent with the actual dilatancy response in marble under different stress paths.The existing empirical and theoretical dilatancy models are analyzed,which shows that the empirical dilatancy coefficient based on the energy background is more universal.