Improving the application of nanomaterials has always been a research hotspot in the field of energetic materials(EMs)due to their obvious catalytic effect on the EMs,especially the uniformly dispersed nanomaterials.H...Improving the application of nanomaterials has always been a research hotspot in the field of energetic materials(EMs)due to their obvious catalytic effect on the EMs,especially the uniformly dispersed nanomaterials.However,few studies have reported the dispersion of nanomaterials.In this study,the dispersity and mixing uniformity of nano-CuCr_(2)O_(4)was evaluated based on the difference of solid UV light absorption between the nano-catalytic materials and EMs.The nano-CuCr_(2)O_(4)/ultrafine AP composites with different dispersity of nano-CuCr_(2)O_(4)were prepared by manual grinding and mechanical grinding with different grinding strength and griding time.And then,the absorbance of different samples at 212 nm was obtained by solid UV testing due to the high repeatability of the absorbance at 210-214 nm for three parallel experiments,and the dispersity of different samples was calculated through the established difference equation.Furthermore,the samples were characterized by XRD,IR,SEM,EDS,DSC and TG-MS,which confirmed that different mixing methods did not change the structure of the samples(XRD and IR),and the mixing uniformity improved with the increase of grinding strength and grinding time(SEM and EDS).The scientificity and feasibility of the difference equation were further verified by DSC.The dispersity of nano-CuCr_(2)O_(4)exhibits a positive intrinsic relationship with its catalytic performance,and the uniformly dispersed nano-CuCr_(2)O_(4)significantly reduces the thermal decomposition temperature of ultrafine AP from 367.7 to 338.8℃.The TG-MS patterns show that the dispersed nano-CuCr_(2)O_(4)advanced the thermal decomposition process of ultrafine AP by about 700 s,especially in the high temperature decomposition stage,and the more concentrated energy release characteristic is beneficial to further enhance the energy performance of AP-based propellants.The above conclusions show that the evaluation method of dispersity based on solid UV curves could provide new ideas for the dispersity characterization of nano-catalytic materials in EMs,which is expected to be widely used in the field of EMs.展开更多
For segmented detectors,surface flatness is critical as it directly influences both energy resolution and image clarity.Additionally,the limited adjustment range of the segmented detectors necessitates precise benchma...For segmented detectors,surface flatness is critical as it directly influences both energy resolution and image clarity.Additionally,the limited adjustment range of the segmented detectors necessitates precise benchmark construction.This paper proposes an architecture for detecting detector flatness based on channel spectral dispersion.By measuring the dispersion fringes for coplanar adjustment,the final adjustment residual is improved to better than 300 nm.This result validates the feasibility of the proposed technology and provides significant technical support for the development of next-generation large-aperture sky survey equipment.展开更多
Catalytic oxidation desulfurization(CODS)technology has shown great promise for diesel desulfurization by virtue of its low cost,mild reaction conditions,and superior desulfurization performance.Herein,a series of FeM...Catalytic oxidation desulfurization(CODS)technology has shown great promise for diesel desulfurization by virtue of its low cost,mild reaction conditions,and superior desulfurization performance.Herein,a series of FeMoO_(x)/LaTiO_(y)-z samples with diverse Fe/Mo ratios were prepared via a facile citric acid-assisted method.The impact of Fe incorporation on the dispersion and surface elemental states of Mo species,as well as oxygen species content of the synthesized FeMoO_(x)/LaTiO_(y)-z catalysts were systematically characterized using TEM,BET,UV-vis DRS,XPS,XANES,and reaction kinetics,and their CODS performances were examined for 4,6-DMDBT removal.Experimental results demonstrated that Fe/Mo ratio significantly affected the Ti−O bond strength,surface dispersion and electronic structure of Mo O_(2)species on FeMoO_(x)/LaTiO_(y)-z catalysts.FeMoO_(x)/LaTiO_(y)-2 catalyst showed outstanding cycling durability and the best CODS performance with almost 100%removal of 4,6-DMDBT from model oil within 75 min due to its proper MoO3 dispersion,optimal redox property,and the most oxygen vacancy concentration.Nevertheless,further enhancing Fe content led to the increased dispersion of Mo species,while the decrease active Mo species as well as the increase of steric effect for 4,6-DMDBT accessing to the catalytic reactive sites considerably increase the apparent activation energy of FeMoO_(x)/LaTiO_(y)-z(z>2)catalysts during the CODS process,thereby seriously suppressing their CODS performances.Moreover,Radical trapping experiments reveal that the·,generated by the activation of O_(2)at the active sites,catalytic oxidized 4,6-DMDBT to the product of 4,6-DMDBTO_(2),thereby enabling both deep desulfurization and recovery of high-value 4,6-DMDBTO_(2).These findings offer an alternative strategy to achieve ultra deep desulfurization as well as separate and recover high economic value sulfone substances from diesel.展开更多
The chemical composition of seawater affects the desulfurization of chalcopyrite in flotation.In this study,desulfurization experiments of chalcopyrite were conducted in both deionized(DI)water and seawater.The result...The chemical composition of seawater affects the desulfurization of chalcopyrite in flotation.In this study,desulfurization experiments of chalcopyrite were conducted in both deionized(DI)water and seawater.The results showed that,the copper grade of the concentrate obtained from seawater flotation decreased to 24.30%,compared to 24.60%in DI water.Concurrently,the recovery of chalcopyrite decreased from 51.39%to 38.67%,while the selectivity index(SI)also had a reduction from 2.006 to 1.798.The incorporation of ethylene diamine tetraacetic acid(EDTA),sodium silicate(SS),and sodium hexametaphosphate(SHMP)yielded an enhancement in the SI value,elevating it from 1.798 to 1.897,2.250 and 2.153,separately.It is particularly noteworthy that an excess of EDTA resulted in a SI value of merely 1.831.The mechanism of action was elucidated through analysis of surface charge measurements,X-ray photoelectron spectroscopy(XPS),Fourier transform infrared spectroscopy(FT-IR),extended Derjaguin-Landau Verwey-Overbeek(E-DLVO)theory,and density functional theory(DFT)calculations.展开更多
Missiles provide long-range precision strike capabilities and have become a cornerstone of modern warfare.The contrail clouds formed by missile during their active flight phase present significant chal-lenges to high-...Missiles provide long-range precision strike capabilities and have become a cornerstone of modern warfare.The contrail clouds formed by missile during their active flight phase present significant chal-lenges to high-altitude environmental observation and target detection and tracking.Existing studies primarily focus on specific airspace regions,leaving critical gaps in understanding the effects of long dispersion times,wide altitude ranges,and variable atmospheric conditions on missile contrail clouds.To address these gaps,this article develops a numerical method based on the Lagrangian random walk model,which incorporates various velocity variation terms,including particle velocity caused by the difference of wind field,by the thermal motion of local gas molecules and by random collisions between contrail cloud particles to capture the influence of environmental wind fields,atmospheric conditions,and particle concentrations on the motion of contrail cloud particles.A general coordinate system aligned with the missile's flight trajectory is employed to represent particle distribution characteristics.The proposed method is in good agreement with the conducted experiments as well as with the available numerical simulations.The results demonstrate that the proposed model effectively simulates the dispersion state of contrail clouds,accurately reflecting the impact of large-scale wind field variations and altitude changes with high computational efficiency.Additionally,simulation results indicate that the increased distance between gas molecules in rarefied environments facilitates enhanced particle dispersion,while larger particles exhibit a faster dispersion rate due to their greater mass.展开更多
A new method for determination of 3-MCPD in powder condiments was established by GC-MS method using 1,4-butanediol as an internal standard.Samples were ultrasonically extracted by ethyl acetate,and cleaned up by dispe...A new method for determination of 3-MCPD in powder condiments was established by GC-MS method using 1,4-butanediol as an internal standard.Samples were ultrasonically extracted by ethyl acetate,and cleaned up by dispersive solid-phase extraction(d-SPE) using octadecane sorbent(C18).Then the extract was derivatized with HFBI and detected by GC-MS.The detection limitation was 1.0 μg/kg,and spiked recoveries ranged from 97%-102% with RSD of 2.1%-4.1%.展开更多
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), has become a worldwide cereal pest with its dispersion to over 30 countries in this century. According to the natural history of its occurrence around the wo...The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), has become a worldwide cereal pest with its dispersion to over 30 countries in this century. According to the natural history of its occurrence around the world, it is postulated RWA originated from western or central Asia. The aphid dispersed gradually to Europe and northern Africa, but its big jump across the ocean to North America is still a mystery. There are two overwintering strategies in RWA. The anholocyclic biotype, often reproducing earlier and more offsprings than the holocyclic one, has greater impact on crops in South Africa and United States. According to the experiments on its thermal response, RWA could withstand temperatures below -20℃, while temperatures above 30℃ would be harmful to its survival. The preference to colder condition may determine its distribution on the world. RWA has made great damages to cereal crops worldwide. It caused loss in crop yield by directly feeding on plant nutrition and disturbing the plant metabolism. But its status as plant virus transporter is open to question. By now, the aphid is still a serious pest in many countries and its invasion to more countries and areas maybe continues. Therefore, the research on its biological characteristics as well as its dispersion apparently needs to be enhanced in the future.展开更多
建立了一种可用于水产品及食用油中氟乐灵残留量分析的分散型固相萃取-气相色谱-负化学离子源质谱方法。水产品及食用油经乙腈提取,4℃冷藏后,采用分散型固相萃取法净化,由气相色谱-负化学离子源质谱选择离子监测技术进行测定与确证...建立了一种可用于水产品及食用油中氟乐灵残留量分析的分散型固相萃取-气相色谱-负化学离子源质谱方法。水产品及食用油经乙腈提取,4℃冷藏后,采用分散型固相萃取法净化,由气相色谱-负化学离子源质谱选择离子监测技术进行测定与确证,同位素内标法定量。在1~40μg / L 范围内氟乐灵农药的线性关系良好;方法定量限(LOQ)为0.02μg / kg;对鳗鱼、烤鳗、梭子蟹、小龙虾、猪油和橄榄油等6种复杂基质进行1.0、2.0和3.0μg / kg 等3个水平的添加回收试验,平均回收率均处于80%~100%之间,RSD≤10.3%;无干扰现象出现。该方法可作为水产品及食用油中氟乐灵残留检测的确证方法。展开更多
High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon ...High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon nanotubes(MWCNTs) based nanofluids with the assistance of sodium dodecyl benzene sulfonate(SDBS) and sodium dodecyl sulfate(SDS) surfactants, and their thermal behaviors. The present work suggests not a solution, but a solution approach and deduces a new conclusion by trying to resolve the agglomeration problem and improve the dispersibility of nanoparticles in the base fluid. The analysis results of FESEM, thermal conductivity, diffusivity, effusivity and heat transfer coefficient enhancement ratio of nanofluid with surfactants SDS and SDBS expose strong evidence of the dispersing effect of surfactant on the making of nanofluid.展开更多
Nano-copper used as lubrication oil additive has good tribological property and active self-repairing effect for friction pairs. The reduction in liquid phase for preparing nano-additive is one of the most common meth...Nano-copper used as lubrication oil additive has good tribological property and active self-repairing effect for friction pairs. The reduction in liquid phase for preparing nano-additive is one of the most common method. Nano-copper was prepared by reduction in liquid phase. The different project and routine practice for preparing nano-copper were researched. The dispersion problem of nano-copper was investigated by surface treatment and high dispersion. The particles dimension, the dispersion stability and the purity of nano-copper were characterized by TEM and XRD. The conclusion indicates that the methods of the preparation and dispersion can obtain 20nm copper additive with good dispersion property in lubrication oil.展开更多
The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pel...The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pellets require higher preheating temperature and longer preheating time to attain required compression strength of pellets compared with the common magnetite oxidized pellets. It is found that when the hematite concentrates are pretreated by high pressure roll grinding (HPRG), the compression strengths of preheated and roasted oxidized hematite pellets get improved even with lower preheating and roasting temperatures and shorter preheating and roasting time. The mechanism for HPRG to improve roasting properties of oxidized pellets were investigated and the cause mainly lies in the increase of micro-sized particles and the decrease of dispersion degree for hematite concentrates, which promotes the hematite concentrate particles to be compacted, the solid-phase crystallization, and finally the formation of Fe203 bonding bridges during subsequent high temperature roasting process.展开更多
We investigate computationally the attenuation and reflection of Terahertz (THz) wave using targets coated with plasmas. The simulators are the Wentzel-Kramer-Brillouin (WKB) method and finite-difference timedoma...We investigate computationally the attenuation and reflection of Terahertz (THz) wave using targets coated with plasmas. The simulators are the Wentzel-Kramer-Brillouin (WKB) method and finite-difference timedomain (FDTD) method. The relation between the frequency of the incident electromagnetic (EM) wave and the attenuation caused by unmagnitized plasma is analyzed. The results demonstrate that the amount of absorbed power is a decreasing function of the EM wave frequency and the plasma collision frequency. For THz band incident wave, the attenuation that is caused by plasma is small when the plasma has common density and the collision frequency. This conclusion has fine applying foreground for plasma anti stealth.展开更多
The influe nce of initiation modes on the explosive dispersion process of the multi-layer co mposite charge(MCC) was studied.Overpressure sensors and high-speed photography system were used to investigate the energy r...The influe nce of initiation modes on the explosive dispersion process of the multi-layer co mposite charge(MCC) was studied.Overpressure sensors and high-speed photography system were used to investigate the energy release process of an MCC with a specific structure.The shock wave pressure and explosive dispersion characteristics of the MCC under different initiation modes were compared.The forming and expanding process of the shock wave of the composite charge under different initiation modes was determined.The separation position of the shock wave and fireball interface was determined.The calculation formulas of the shock radius and overpressure of the composite charge are presented.The radius of the shock wave of the composite charge was significantly affected by the initiation mode.Moreover,the development process of the composite explosive fireball under different initiation modes was analyzed,the variation rules of the composite charge dispersion radius and fireball dispersion velocity with time were obtained under the different initiation modes,the explosion energy release rate of composite charge under simultaneous initiation modes was the highest,and the peak overpressure under the simultaneous initiation mode was 1.61 times that of central single-point initiation.展开更多
基金the National Natural Science Foundation of China(Project Nos.21805139,21905023,12102194,22005144 and 22005145)the Joint Funds of the National Natural Science Foundation of China(Grant No.U2141202)+2 种基金Natural Science Foundation of Jiangsu Province(Grant No.BK20200471)the Fundamental Research Funds for the Central Universities(Grant Nos.30920041106,30921011203)Young Elite Scientists Sponsorship Program by CAST(Program,2021QNRC001).
文摘Improving the application of nanomaterials has always been a research hotspot in the field of energetic materials(EMs)due to their obvious catalytic effect on the EMs,especially the uniformly dispersed nanomaterials.However,few studies have reported the dispersion of nanomaterials.In this study,the dispersity and mixing uniformity of nano-CuCr_(2)O_(4)was evaluated based on the difference of solid UV light absorption between the nano-catalytic materials and EMs.The nano-CuCr_(2)O_(4)/ultrafine AP composites with different dispersity of nano-CuCr_(2)O_(4)were prepared by manual grinding and mechanical grinding with different grinding strength and griding time.And then,the absorbance of different samples at 212 nm was obtained by solid UV testing due to the high repeatability of the absorbance at 210-214 nm for three parallel experiments,and the dispersity of different samples was calculated through the established difference equation.Furthermore,the samples were characterized by XRD,IR,SEM,EDS,DSC and TG-MS,which confirmed that different mixing methods did not change the structure of the samples(XRD and IR),and the mixing uniformity improved with the increase of grinding strength and grinding time(SEM and EDS).The scientificity and feasibility of the difference equation were further verified by DSC.The dispersity of nano-CuCr_(2)O_(4)exhibits a positive intrinsic relationship with its catalytic performance,and the uniformly dispersed nano-CuCr_(2)O_(4)significantly reduces the thermal decomposition temperature of ultrafine AP from 367.7 to 338.8℃.The TG-MS patterns show that the dispersed nano-CuCr_(2)O_(4)advanced the thermal decomposition process of ultrafine AP by about 700 s,especially in the high temperature decomposition stage,and the more concentrated energy release characteristic is beneficial to further enhance the energy performance of AP-based propellants.The above conclusions show that the evaluation method of dispersity based on solid UV curves could provide new ideas for the dispersity characterization of nano-catalytic materials in EMs,which is expected to be widely used in the field of EMs.
文摘For segmented detectors,surface flatness is critical as it directly influences both energy resolution and image clarity.Additionally,the limited adjustment range of the segmented detectors necessitates precise benchmark construction.This paper proposes an architecture for detecting detector flatness based on channel spectral dispersion.By measuring the dispersion fringes for coplanar adjustment,the final adjustment residual is improved to better than 300 nm.This result validates the feasibility of the proposed technology and provides significant technical support for the development of next-generation large-aperture sky survey equipment.
基金supported by the Natural Science Foundation of Guangdong Province(2024A1515010908,2025A1515011103)Opening Project of Hubei Key Laboratory of Plasma Chemistry and Advanced Materials(2024P11)+2 种基金Postdoctoral Fellowship Program of CPSF(GZC20233104)National Natural Science Foundation of China(22202087)Opening Project of Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing&Finishing(STRZ202418)。
文摘Catalytic oxidation desulfurization(CODS)technology has shown great promise for diesel desulfurization by virtue of its low cost,mild reaction conditions,and superior desulfurization performance.Herein,a series of FeMoO_(x)/LaTiO_(y)-z samples with diverse Fe/Mo ratios were prepared via a facile citric acid-assisted method.The impact of Fe incorporation on the dispersion and surface elemental states of Mo species,as well as oxygen species content of the synthesized FeMoO_(x)/LaTiO_(y)-z catalysts were systematically characterized using TEM,BET,UV-vis DRS,XPS,XANES,and reaction kinetics,and their CODS performances were examined for 4,6-DMDBT removal.Experimental results demonstrated that Fe/Mo ratio significantly affected the Ti−O bond strength,surface dispersion and electronic structure of Mo O_(2)species on FeMoO_(x)/LaTiO_(y)-z catalysts.FeMoO_(x)/LaTiO_(y)-2 catalyst showed outstanding cycling durability and the best CODS performance with almost 100%removal of 4,6-DMDBT from model oil within 75 min due to its proper MoO3 dispersion,optimal redox property,and the most oxygen vacancy concentration.Nevertheless,further enhancing Fe content led to the increased dispersion of Mo species,while the decrease active Mo species as well as the increase of steric effect for 4,6-DMDBT accessing to the catalytic reactive sites considerably increase the apparent activation energy of FeMoO_(x)/LaTiO_(y)-z(z>2)catalysts during the CODS process,thereby seriously suppressing their CODS performances.Moreover,Radical trapping experiments reveal that the·,generated by the activation of O_(2)at the active sites,catalytic oxidized 4,6-DMDBT to the product of 4,6-DMDBTO_(2),thereby enabling both deep desulfurization and recovery of high-value 4,6-DMDBTO_(2).These findings offer an alternative strategy to achieve ultra deep desulfurization as well as separate and recover high economic value sulfone substances from diesel.
基金Project(52174239)supported by the National Natural Science Foundation of ChinaProject(2021YFC2902400)supported by the National Key R&D Program of China。
文摘The chemical composition of seawater affects the desulfurization of chalcopyrite in flotation.In this study,desulfurization experiments of chalcopyrite were conducted in both deionized(DI)water and seawater.The results showed that,the copper grade of the concentrate obtained from seawater flotation decreased to 24.30%,compared to 24.60%in DI water.Concurrently,the recovery of chalcopyrite decreased from 51.39%to 38.67%,while the selectivity index(SI)also had a reduction from 2.006 to 1.798.The incorporation of ethylene diamine tetraacetic acid(EDTA),sodium silicate(SS),and sodium hexametaphosphate(SHMP)yielded an enhancement in the SI value,elevating it from 1.798 to 1.897,2.250 and 2.153,separately.It is particularly noteworthy that an excess of EDTA resulted in a SI value of merely 1.831.The mechanism of action was elucidated through analysis of surface charge measurements,X-ray photoelectron spectroscopy(XPS),Fourier transform infrared spectroscopy(FT-IR),extended Derjaguin-Landau Verwey-Overbeek(E-DLVO)theory,and density functional theory(DFT)calculations.
文摘Missiles provide long-range precision strike capabilities and have become a cornerstone of modern warfare.The contrail clouds formed by missile during their active flight phase present significant chal-lenges to high-altitude environmental observation and target detection and tracking.Existing studies primarily focus on specific airspace regions,leaving critical gaps in understanding the effects of long dispersion times,wide altitude ranges,and variable atmospheric conditions on missile contrail clouds.To address these gaps,this article develops a numerical method based on the Lagrangian random walk model,which incorporates various velocity variation terms,including particle velocity caused by the difference of wind field,by the thermal motion of local gas molecules and by random collisions between contrail cloud particles to capture the influence of environmental wind fields,atmospheric conditions,and particle concentrations on the motion of contrail cloud particles.A general coordinate system aligned with the missile's flight trajectory is employed to represent particle distribution characteristics.The proposed method is in good agreement with the conducted experiments as well as with the available numerical simulations.The results demonstrate that the proposed model effectively simulates the dispersion state of contrail clouds,accurately reflecting the impact of large-scale wind field variations and altitude changes with high computational efficiency.Additionally,simulation results indicate that the increased distance between gas molecules in rarefied environments facilitates enhanced particle dispersion,while larger particles exhibit a faster dispersion rate due to their greater mass.
文摘A new method for determination of 3-MCPD in powder condiments was established by GC-MS method using 1,4-butanediol as an internal standard.Samples were ultrasonically extracted by ethyl acetate,and cleaned up by dispersive solid-phase extraction(d-SPE) using octadecane sorbent(C18).Then the extract was derivatized with HFBI and detected by GC-MS.The detection limitation was 1.0 μg/kg,and spiked recoveries ranged from 97%-102% with RSD of 2.1%-4.1%.
文摘The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), has become a worldwide cereal pest with its dispersion to over 30 countries in this century. According to the natural history of its occurrence around the world, it is postulated RWA originated from western or central Asia. The aphid dispersed gradually to Europe and northern Africa, but its big jump across the ocean to North America is still a mystery. There are two overwintering strategies in RWA. The anholocyclic biotype, often reproducing earlier and more offsprings than the holocyclic one, has greater impact on crops in South Africa and United States. According to the experiments on its thermal response, RWA could withstand temperatures below -20℃, while temperatures above 30℃ would be harmful to its survival. The preference to colder condition may determine its distribution on the world. RWA has made great damages to cereal crops worldwide. It caused loss in crop yield by directly feeding on plant nutrition and disturbing the plant metabolism. But its status as plant virus transporter is open to question. By now, the aphid is still a serious pest in many countries and its invasion to more countries and areas maybe continues. Therefore, the research on its biological characteristics as well as its dispersion apparently needs to be enhanced in the future.
文摘建立了一种可用于水产品及食用油中氟乐灵残留量分析的分散型固相萃取-气相色谱-负化学离子源质谱方法。水产品及食用油经乙腈提取,4℃冷藏后,采用分散型固相萃取法净化,由气相色谱-负化学离子源质谱选择离子监测技术进行测定与确证,同位素内标法定量。在1~40μg / L 范围内氟乐灵农药的线性关系良好;方法定量限(LOQ)为0.02μg / kg;对鳗鱼、烤鳗、梭子蟹、小龙虾、猪油和橄榄油等6种复杂基质进行1.0、2.0和3.0μg / kg 等3个水平的添加回收试验,平均回收率均处于80%~100%之间,RSD≤10.3%;无干扰现象出现。该方法可作为水产品及食用油中氟乐灵残留检测的确证方法。
基金Project(NRF-2014R1A1A4A03005148)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology,Korea
文摘High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon nanotubes(MWCNTs) based nanofluids with the assistance of sodium dodecyl benzene sulfonate(SDBS) and sodium dodecyl sulfate(SDS) surfactants, and their thermal behaviors. The present work suggests not a solution, but a solution approach and deduces a new conclusion by trying to resolve the agglomeration problem and improve the dispersibility of nanoparticles in the base fluid. The analysis results of FESEM, thermal conductivity, diffusivity, effusivity and heat transfer coefficient enhancement ratio of nanofluid with surfactants SDS and SDBS expose strong evidence of the dispersing effect of surfactant on the making of nanofluid.
文摘Nano-copper used as lubrication oil additive has good tribological property and active self-repairing effect for friction pairs. The reduction in liquid phase for preparing nano-additive is one of the most common method. Nano-copper was prepared by reduction in liquid phase. The different project and routine practice for preparing nano-copper were researched. The dispersion problem of nano-copper was investigated by surface treatment and high dispersion. The particles dimension, the dispersion stability and the purity of nano-copper were characterized by TEM and XRD. The conclusion indicates that the methods of the preparation and dispersion can obtain 20nm copper additive with good dispersion property in lubrication oil.
基金Project(50725416) supported by the National Natural Science Funds for Distinguished Young Scholars of China
文摘The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pellets require higher preheating temperature and longer preheating time to attain required compression strength of pellets compared with the common magnetite oxidized pellets. It is found that when the hematite concentrates are pretreated by high pressure roll grinding (HPRG), the compression strengths of preheated and roasted oxidized hematite pellets get improved even with lower preheating and roasting temperatures and shorter preheating and roasting time. The mechanism for HPRG to improve roasting properties of oxidized pellets were investigated and the cause mainly lies in the increase of micro-sized particles and the decrease of dispersion degree for hematite concentrates, which promotes the hematite concentrate particles to be compacted, the solid-phase crystallization, and finally the formation of Fe203 bonding bridges during subsequent high temperature roasting process.
基金the National Natural Science Foundation of China (60771017)the China Postdoctoral ScienceFoundation (20060390272)
文摘We investigate computationally the attenuation and reflection of Terahertz (THz) wave using targets coated with plasmas. The simulators are the Wentzel-Kramer-Brillouin (WKB) method and finite-difference timedomain (FDTD) method. The relation between the frequency of the incident electromagnetic (EM) wave and the attenuation caused by unmagnitized plasma is analyzed. The results demonstrate that the amount of absorbed power is a decreasing function of the EM wave frequency and the plasma collision frequency. For THz band incident wave, the attenuation that is caused by plasma is small when the plasma has common density and the collision frequency. This conclusion has fine applying foreground for plasma anti stealth.
文摘The influe nce of initiation modes on the explosive dispersion process of the multi-layer co mposite charge(MCC) was studied.Overpressure sensors and high-speed photography system were used to investigate the energy release process of an MCC with a specific structure.The shock wave pressure and explosive dispersion characteristics of the MCC under different initiation modes were compared.The forming and expanding process of the shock wave of the composite charge under different initiation modes was determined.The separation position of the shock wave and fireball interface was determined.The calculation formulas of the shock radius and overpressure of the composite charge are presented.The radius of the shock wave of the composite charge was significantly affected by the initiation mode.Moreover,the development process of the composite explosive fireball under different initiation modes was analyzed,the variation rules of the composite charge dispersion radius and fireball dispersion velocity with time were obtained under the different initiation modes,the explosion energy release rate of composite charge under simultaneous initiation modes was the highest,and the peak overpressure under the simultaneous initiation mode was 1.61 times that of central single-point initiation.