制造业的生产物流方式处于不断变革中,对其建模仿真可为制造系统规划设计、分析及改造提供决策支持。依“人-机-物-环-法”分类给出了智能车间制造系统中实体元素的描述,结合EFSM(extended finite state machine)和组件化建模思想,建立...制造业的生产物流方式处于不断变革中,对其建模仿真可为制造系统规划设计、分析及改造提供决策支持。依“人-机-物-环-法”分类给出了智能车间制造系统中实体元素的描述,结合EFSM(extended finite state machine)和组件化建模思想,建立了生产和物流组件化EFSM模型;阐述了智能车间多作业生产的建模过程以及组件模型实例化方法;通过EFSM-DEVS(discrete event system specification)模型自动转换及DEVS引擎完成了仿真运行。仿真结果表明:该方法所建立的模型更符合车间实际状况,适用性更广;组件化建模思想能构造更具扩展性的软件;建模及仿真运行的3D可视化使软件直观性更好,其仿真结果与AnyLogic保持一致。展开更多
Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Conseq...Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Consequently,the adoption of advanced modeling methodologies adept at handling complexity and scalability is imperative.Moreover,industrial systems are no longer quiescent,thus the intelligent operations of the systems should be dynamically specified in the model.In this paper,the composition of the subsystem behaviors is studied to generate the complexity and scalability of the global system model,and a Boolean semantic specifying algorithm is proposed for generating dynamic intelligent operations in the model.In traditional modeling approaches,the change or addition of specifications always necessitates the complete resubmission of the system model,a resource-consuming and error-prone process.Compared with traditional approaches,our approach has three remarkable advantages:(i)an established Boolean semantic can be fitful for all kinds of systems;(ii)there is no need to resubmit the system model whenever there is a change or addition of the operations;(iii)multiple specifying tasks can be easily achieved by continuously adding a new semantic.Thus,this general modeling approach has wide potential for future complex and intelligent industrial systems.展开更多
文摘制造业的生产物流方式处于不断变革中,对其建模仿真可为制造系统规划设计、分析及改造提供决策支持。依“人-机-物-环-法”分类给出了智能车间制造系统中实体元素的描述,结合EFSM(extended finite state machine)和组件化建模思想,建立了生产和物流组件化EFSM模型;阐述了智能车间多作业生产的建模过程以及组件模型实例化方法;通过EFSM-DEVS(discrete event system specification)模型自动转换及DEVS引擎完成了仿真运行。仿真结果表明:该方法所建立的模型更符合车间实际状况,适用性更广;组件化建模思想能构造更具扩展性的软件;建模及仿真运行的3D可视化使软件直观性更好,其仿真结果与AnyLogic保持一致。
基金supported by the National Natural Science Foundation of China(U21B2074,52105070).
文摘Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Consequently,the adoption of advanced modeling methodologies adept at handling complexity and scalability is imperative.Moreover,industrial systems are no longer quiescent,thus the intelligent operations of the systems should be dynamically specified in the model.In this paper,the composition of the subsystem behaviors is studied to generate the complexity and scalability of the global system model,and a Boolean semantic specifying algorithm is proposed for generating dynamic intelligent operations in the model.In traditional modeling approaches,the change or addition of specifications always necessitates the complete resubmission of the system model,a resource-consuming and error-prone process.Compared with traditional approaches,our approach has three remarkable advantages:(i)an established Boolean semantic can be fitful for all kinds of systems;(ii)there is no need to resubmit the system model whenever there is a change or addition of the operations;(iii)multiple specifying tasks can be easily achieved by continuously adding a new semantic.Thus,this general modeling approach has wide potential for future complex and intelligent industrial systems.