期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
基于DPMM-CHMM的机械设备性能退化评估研究 被引量:8
1
作者 季云 王恒 +1 位作者 朱龙彪 刘肖 《振动与冲击》 EI CSCD 北大核心 2017年第23期170-174,共5页
针对传统的HMM模型状态数必须预先设定的不足,提出了一种基于DPMM-CHMM的机械设备性能退化评估方法。该方法利用DPMM模型的自动聚类功能,实现了模型结构根据观测数据的自适应变化和动态调整,获得设备运行过程中的最优退化状态数,并结合C... 针对传统的HMM模型状态数必须预先设定的不足,提出了一种基于DPMM-CHMM的机械设备性能退化评估方法。该方法利用DPMM模型的自动聚类功能,实现了模型结构根据观测数据的自适应变化和动态调整,获得设备运行过程中的最优退化状态数,并结合CHMM良好的分析和建模能力,得到设备退化状态转移路径,实现机械设备运行过程中的退化状态识别和性能评估,并利用滚动轴承全寿命数据进行了应用研究。结果表明,该方法可以有效地识别轴承运行中的不同退化状态,为基于状态的设备维修提供了理论指导。 展开更多
关键词 狄利克雷混合模型 连续隐马尔可夫模型 性能退化评估 滚动轴承
在线阅读 下载PDF
Dirichlet过程及其在自然语言处理中的应用 被引量:9
2
作者 徐谦 周俊生 陈家骏 《中文信息学报》 CSCD 北大核心 2009年第5期25-32,46,共9页
Dirichlet过程是一种典型的变参数贝叶斯模型,其优点是参数的个数和性质灵活可变,可通过模型和数据来自主地计算,近年来它已成为机器学习和自然语言处理研究领域中的一个研究热点。该文较为系统的介绍了Dirichlet过程的产生、发展,并重... Dirichlet过程是一种典型的变参数贝叶斯模型,其优点是参数的个数和性质灵活可变,可通过模型和数据来自主地计算,近年来它已成为机器学习和自然语言处理研究领域中的一个研究热点。该文较为系统的介绍了Dirichlet过程的产生、发展,并重点介绍了其模型计算,同时结合自然语言处理中的具体应用问题进行了详细分析。最后讨论了Dirichlet过程未来的研究方向和发展趋势。 展开更多
关键词 计算机应用 中文信息处理 变参数贝叶斯模型 dirichlet过程 dirichlet过程混合模型 马尔可夫链蒙特卡罗
在线阅读 下载PDF
基于DPMM和MRF的高分辨率遥感图像无监督对象分割 被引量:3
3
作者 刘尚旺 侯旺旺 赵欣莹 《仪器仪表学报》 EI CAS CSCD 北大核心 2018年第11期222-231,共10页
为准确、自动地进行高分辨率遥感图像地物目标对象分割,提出一种基于狄利克雷过程混合模型(DPMM)和马尔可夫随机场(MRF)的无监督对象分割方法(DPMM-OMRF)。首先,使用网格划分超像素为基本对象;其次,使用多维高斯分布构建DPMM先验,并使... 为准确、自动地进行高分辨率遥感图像地物目标对象分割,提出一种基于狄利克雷过程混合模型(DPMM)和马尔可夫随机场(MRF)的无监督对象分割方法(DPMM-OMRF)。首先,使用网格划分超像素为基本对象;其次,使用多维高斯分布构建DPMM先验,并使用相似性度量构建MRF先验,二者以自适应权重方式相结合作为DPMM-OMRF模型的先验分布;然后,在贝叶斯框架下,将基本对象的似然分布与联合先验分布结合,构建DPMM-OMRF模型,并推导类标签的条件分布;最后,通过推导和计算类标签后验概率,设计Gibbs采样方法,更新DPMM-OMRF模型的标签场和参数。实验结果表明,DPMM-OMRF模型的总体分类精度(OA)提高到90%左右,Kappa系数接近0.8,并且能够准确地识别出地物目标类属数和更加准确地分割出完整地物目标对象。 展开更多
关键词 遥感图像 无监督对象分割 狄利克雷过程混合模型 马尔可夫随机场 GIBBS采样
在线阅读 下载PDF
基于时间Dirichlet过程混合模型的在线目标跟踪 被引量:1
4
作者 孙建中 熊忠阳 张玉芳 《系统仿真学报》 CAS CSCD 北大核心 2013年第6期1155-1160,共6页
针对目标跟踪过程中,可变目标表观的特征数据会发生"分布漂移"的问题,提出一种基于非参贝叶斯多模表观模型的目标跟踪方法。首先,以时间Dirichlet过程为先验分布,把先前估计的目标样本划分为不同的聚集,使得每个聚集表示一类... 针对目标跟踪过程中,可变目标表观的特征数据会发生"分布漂移"的问题,提出一种基于非参贝叶斯多模表观模型的目标跟踪方法。首先,以时间Dirichlet过程为先验分布,把先前估计的目标样本划分为不同的聚集,使得每个聚集表示一类表观,同时,每个表观类被建模为判别式分类器;然后,基于贝叶斯后验推断,权衡先前表观模型的分类误差和拆分聚集的代价,从数据中自主学习表观模型;最后,基于Noisy-OR模型,以贪心(Greedy)策略协同各表观分类器判别出目标。仿真结果表明该方法能较好的跟踪可变目标表观,改善了目标跟踪性能。 展开更多
关键词 目标跟踪 在线多示例Boosting算法 时间dirichlet过程混合模型 非参贝叶斯模型
在线阅读 下载PDF
基于Dirichlet过程混合模型的滚动轴承运行状态识别
5
作者 瞿家明 周易文 +1 位作者 王恒 黄希 《轴承》 北大核心 2018年第9期58-62,共5页
针对滚动轴承的运行状态识别问题,利用典型DP混合模型良好的聚类特性,提出了基于DPMM的滚动轴承运行状态识别算法,并推导了算法聚类的详细步骤。利用轴承状态监测数据进行了验证和分析,结果表明:DPMM算法不依赖于训练样本,模型结构能够... 针对滚动轴承的运行状态识别问题,利用典型DP混合模型良好的聚类特性,提出了基于DPMM的滚动轴承运行状态识别算法,并推导了算法聚类的详细步骤。利用轴承状态监测数据进行了验证和分析,结果表明:DPMM算法不依赖于训练样本,模型结构能够随着观测数据的变化实现自适应变化和动态调整,自动识别轴承的运行状态数;同时,识别结果不依赖于DPMM算法初始参数的选择,具有较强的稳定性和适应性。 展开更多
关键词 滚动轴承 状态识别 非参数BayeS模型 dirichlet过程混合模型
在线阅读 下载PDF
基于PU学习算法的虚假评论识别研究 被引量:31
6
作者 任亚峰 姬东鸿 +1 位作者 张红斌 尹兰 《计算机研究与发展》 EI CSCD 北大核心 2015年第3期639-648,共10页
识别虚假评论有着重要的理论意义与现实价值.先前工作集中于启发式策略和传统的全监督学习算法.最近研究表明:人类无法通过先验知识有效识别虚假评论,手工标注的数据集必定存在一定数量的误例,因此简单使用传统的全监督学习算法识别虚... 识别虚假评论有着重要的理论意义与现实价值.先前工作集中于启发式策略和传统的全监督学习算法.最近研究表明:人类无法通过先验知识有效识别虚假评论,手工标注的数据集必定存在一定数量的误例,因此简单使用传统的全监督学习算法识别虚假评论并不合理.容易被错误标注的样例称为间谍样例,如何确定这些样例的类别标签将直接影响分类器的性能.基于少量的真实评论和大量的未标注评论,提出一种创新的PU(positive and unlabeled)学习框架来识别虚假评论.首先,从无标注数据集中识别出少量可信度较高的负例.其次,通过整合LDA(latent Dirichlet allocation)和K-means,分别计算出多个代表性的正例和负例.接着,基于狄利克雷过程混合模型(Dirichlet process mixture model,DPMM),对所有间谍样例进行聚类,混合种群性和个体性策略来确定间谍样例的类别标签.最后,多核学习算法被用来训练最终的分类器.数值实验证实了所提算法的有效性,超过当前的基准. 展开更多
关键词 虚假评论 全监督学习 PU学习 狄利克雷过程混合模型 多核学习
在线阅读 下载PDF
基于数据关联狄利克雷混合模型的电网净负荷不确定性表征研究 被引量:7
7
作者 李远征 孙天乐 +2 位作者 刘云 赵勇 曾志刚 《自动化学报》 EI CAS CSCD 北大核心 2022年第3期747-761,共15页
针对电网净负荷时序数据关联的特点,提出基于数据关联的狄利克雷混合模型(Data-relevance Dirichlet process mixture model,DDPMM)来表征净负荷的不确定性.首先,使用狄利克雷混合模型对净负荷的观测数据与预测数据进行拟合,得到其混合... 针对电网净负荷时序数据关联的特点,提出基于数据关联的狄利克雷混合模型(Data-relevance Dirichlet process mixture model,DDPMM)来表征净负荷的不确定性.首先,使用狄利克雷混合模型对净负荷的观测数据与预测数据进行拟合,得到其混合概率模型;然后,提出考虑数据关联的变分贝叶斯推断方法,改进后验分布对该混合概率模型进行求解,从而得到混合模型的最优参数;最后,根据净负荷预测值的大小得到其对应的预测误差边缘概率分布,实现不确定性表征.本文基于比利时电网的净负荷数据进行检验,算例结果表明:与传统的狄利克雷混合模型和高斯混合模型(Gaussian mixture model,GMM)等方法相比,所提出的基于数据关联狄利克雷混合模型可以更为有效地表征净负荷的不确定性. 展开更多
关键词 狄利克雷混合模型 净负荷 不确定性表征 时序序列 预测误差
在线阅读 下载PDF
一种基于多极化散射机理的极化SAR图像舰船目标检测方法 被引量:9
8
作者 文伟 曹雪菲 +3 位作者 张学峰 陈渤 王英华 刘宏伟 《电子与信息学报》 EI CSCD 北大核心 2017年第1期103-109,共7页
针对基于单一极化特性增强的极化SAR图像目标检测方法的缺陷,该文将DP(Dirichlet Process)混合隐变量SVM模型(DPLVSVM)应用于极化SAR图像舰船目标检测,提出一种基于多极化散射机理的检测方法。该方法通过联合Dirichlet过程混合与Bayes ... 针对基于单一极化特性增强的极化SAR图像目标检测方法的缺陷,该文将DP(Dirichlet Process)混合隐变量SVM模型(DPLVSVM)应用于极化SAR图像舰船目标检测,提出一种基于多极化散射机理的检测方法。该方法通过联合Dirichlet过程混合与Bayes SVM模型,将信号空间划分成若干局部区域,然后在每一局部区域学习一个独立的极化检测器,并将各局部检测器进行组合实现全局多极化散射机理的目标检测。模型采用非参数化Bayes方法自动确定局部区域数量,在完全Bayes框架下,将局部区域划分及检测器学习进行联合优化,保证了各局部区域样本的可分性。另外,为了降低极化特征冗余,该文进一步提出带特征选择功能的稀疏提升DP混合隐变量SVM模型(SPDPLVSVM),提高模型的推广能力。该模型由于采用共轭先验分布,因而可以利用Gibbs采样方法进行高效求解。在RADARSAT-2数据上进行的实验验证了所提方法的有效性。 展开更多
关键词 极化SAR 目标检测 dirichlet过程混合模型 BAYES SVM 特征选择
在线阅读 下载PDF
基于狄利克雷混合模型的刀具磨损量在线估计 被引量:8
9
作者 于劲松 时祎瑜 +1 位作者 梁爽 唐荻音 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第3期689-694,共6页
提出了一种基于狄利克雷混合模型的刀具磨损状态监测和磨损量估计的新方法。该方法将刀具磨损过程描述为磨损量的累积过程,通过对磨损增量的连续估计获得刀具当前的磨损量估计。首先对原始力信号进行特征提取,接着在不确定磨损增量状态... 提出了一种基于狄利克雷混合模型的刀具磨损状态监测和磨损量估计的新方法。该方法将刀具磨损过程描述为磨损量的累积过程,通过对磨损增量的连续估计获得刀具当前的磨损量估计。首先对原始力信号进行特征提取,接着在不确定磨损增量状态数量的前提下采用狄利克雷混合模型对特征自动分类,然后利用吉布斯采样方法确定模型参数,最终得到描述力信号特征与磨损增量映射关系的刀具磨损状态混合模型。根据该混合模型以及当前的力信号信息即可完成刀具磨损量的在线估计。真实应用案例证明了该方法能自适应学习磨损状态并有效估计刀具的连续磨损值。 展开更多
关键词 刀具健康状态监测 刀具磨损 狄利克雷混合模型 吉布斯采样
在线阅读 下载PDF
面向动态主题数的话题演化分析 被引量:6
10
作者 方莹 黄河燕 +2 位作者 辛欣 魏骁驰 庄琨 《中文信息学报》 CSCD 北大核心 2014年第3期142-149,共8页
话题演化用于自动分析话题变化趋势,具有较高的应用和研究价值。ILDA(Infinite Latent Dirichlet Allocation)模型在LDA(Latent Dirichlet Allocation)模型的基础上增加了狄利克雷过程,除了能获取隐变量,更重要的是能完成超参的动态更... 话题演化用于自动分析话题变化趋势,具有较高的应用和研究价值。ILDA(Infinite Latent Dirichlet Allocation)模型在LDA(Latent Dirichlet Allocation)模型的基础上增加了狄利克雷过程,除了能获取隐变量,更重要的是能完成超参的动态更新和主题数的变动。而已有的话题演化研究中,话题的主题数需要事先指定且无法变动,基于ILDA模型的方法则可以针对性地解决该问题。构建的话题演化分析系统可实现如下功能:各周期内按不同主题分类、相邻周期间的主题进行关联、按时间顺序计算子话题强度。实验显示,基于ILDA模型的参数动态更新符合实际需求,话题演化分析过程完善可行。 展开更多
关键词 主题模型 无参混合模型 狄利克雷过程 话题演化
在线阅读 下载PDF
一种基于Dirichelt过程隐变量支撑向量机模型的目标识别方法 被引量:4
11
作者 张学峰 陈渤 +1 位作者 王鹏辉 刘宏伟 《电子与信息学报》 EI CSCD 北大核心 2015年第1期29-36,共8页
在目标识别中,对于样本数较多且分布复杂的数据,若将所有训练样本用来训练一个单一的分类器,会增加分类器的训练复杂度,且容易忽视样本的内在结构,不利于分类。因此人们提出了混合专家系统(ME),即将训练样本集划分为多个训练样本子集,... 在目标识别中,对于样本数较多且分布复杂的数据,若将所有训练样本用来训练一个单一的分类器,会增加分类器的训练复杂度,且容易忽视样本的内在结构,不利于分类。因此人们提出了混合专家系统(ME),即将训练样本集划分为多个训练样本子集,并在每个子集上单独训练分类器。但是传统ME系统需要人为确定专家个数,并且每个子集的学习独立于后端的任务,如分类。该文提出一种基于Dirichlet过程(DP)混合隐变量(LV)支持向量机(SVM)模型(DPLVSVM)的目标识别算法,采用DP混合模型自动确定样本聚类个数,同时每个聚类中使用线性隐变量SVM(LVSVM)进行分类。不同于以往算法,DPLVSVM将聚类过程和分类器的训练过程联合优化,保证了各个子集中样本的分布上的一致性和可分性,而且可以利用Gibbs采样技术对模型参数进行简便有效的估计。基于人工数据集、公共数据集以及雷达实测数据的实验验证了该文方法的有效性。 展开更多
关键词 目标识别 混合专家系统 dirichlet过程混合模型 隐变量支持向量机分类器
在线阅读 下载PDF
一种基于狄利克雷过程混合模型的文本聚类算法 被引量:10
12
作者 高悦 王文贤 杨淑贤 《信息网络安全》 2015年第11期60-65,共6页
随着互联网的普及,论坛、微博、微信等新媒体已经成为人们获取和发布信息的重要渠道,而网络中的这些文本数据,由于文本数目和内容的不确定性,给网络舆情聚类分析工作带来了很大的挑战。在文本聚类分析中,选择合适的聚类数目一直是一个... 随着互联网的普及,论坛、微博、微信等新媒体已经成为人们获取和发布信息的重要渠道,而网络中的这些文本数据,由于文本数目和内容的不确定性,给网络舆情聚类分析工作带来了很大的挑战。在文本聚类分析中,选择合适的聚类数目一直是一个难点。文章提出了一种基于狄利克雷过程混合模型的文本聚类算法,该算法基于非参数贝叶斯框架,可以将有限混合模型扩展成无限混合分量的混合模型,使用狄利克雷过程中的中国餐馆过程构造方式,实现了基于中国餐馆过程的狄利克雷混合模型,然后采用吉布斯采样算法近似求解模型,能够在不断的迭代过程中确定文本的聚类数目。实验结果表明,文章提出的聚类算法,和经典的K-means聚类算法相比,不仅能更好的动态确定文本主题聚类数目,而且该算法的聚类质量(纯度、F-score和轮廓系数)明显好于K-means聚类算法。 展开更多
关键词 文本聚类 狄利克雷过程混合模型 非参数贝叶斯 吉布斯采样
在线阅读 下载PDF
一种全自动的MSTAR SAR目标图像分割方法 被引量:1
13
作者 徐侃 杨丽春 +1 位作者 刘钢 杨文 《现代雷达》 CSCD 北大核心 2012年第9期59-62,共4页
狄利克雷过程混合模型(Dirichlet Process Mixture,DPM)作为一种非参数概率统计模型,可以有效应用于SAR图像的非监督分类。文中提出一种全自动的MSTAR坦克SAR图像分割方法。该方法首先基于DPM确定出图像中的类别数目,接着使用马尔科夫... 狄利克雷过程混合模型(Dirichlet Process Mixture,DPM)作为一种非参数概率统计模型,可以有效应用于SAR图像的非监督分类。文中提出一种全自动的MSTAR坦克SAR图像分割方法。该方法首先基于DPM确定出图像中的类别数目,接着使用马尔科夫随机场(Markov Random Field,MRF)对所得图像类别概率的空间邻域关系进行描述,然后结合标号代价能量优化算法获取最终的分割结果。该方法在不需要人为指定待分割图像类别个数的同时,能较好地保证分割结果的合理性与连贯性。在MSTAR SAR数据上的实验表明了其有效性。 展开更多
关键词 SAR图像 混合狄利克雷模型 马尔科夫随机场 能量优化
在线阅读 下载PDF
基于特征贡献率的机械故障分类方法 被引量:2
14
作者 马波 赵祎 《振动.测试与诊断》 EI CSCD 北大核心 2020年第3期458-464,622,共8页
为提高往复压缩机、航空发动机等复杂机械故障分类的准确率,依据特征参数对不同故障的敏感度存在差异的特性,提出一种狄利克雷过程混合模型(Dirichlet process mixture model,简称DPMM)与贝叶斯推断贡献(Bayesian inference contributi... 为提高往复压缩机、航空发动机等复杂机械故障分类的准确率,依据特征参数对不同故障的敏感度存在差异的特性,提出一种狄利克雷过程混合模型(Dirichlet process mixture model,简称DPMM)与贝叶斯推断贡献(Bayesian inference contribution,简称BIC)相结合的分析方法。采用DPMM方法自学习机械振动信号高维特征的统计分布模型,并依据BIC理论计算得到各特征参数对模型的贡献率,通过对比观测数据与各类故障数据特征贡献率间的差异实现故障分类。试验结果表明,该方法的平均分类准确率比基于高斯混合模型(Gaussian mixture model,简称GMM)的故障诊断方法的平均分类准确率提高19.29%,比基于Relief算法的故障诊断方法的平均分类准确率提高32.71%,且该方法的时效性高,泛化性能强,能够更有效地进行复杂机械故障分类。 展开更多
关键词 故障诊断 特征贡献率 狄利克雷过程混合模型 贝叶斯推断
在线阅读 下载PDF
居民个体出行行为聚类及出行模式分析——以三亚市为例 被引量:5
15
作者 陈仲 杨克青 《上海城市规划》 2020年第5期30-35,共6页
手机信令数据不仅记录个体出行轨迹,同时也为分析城市居民出行模式提供了基础。通过提出一种基于狄利克雷过程混合模型的聚类方法,以从手机信令提取的出行OD(Origin-Destination)为基础,研究个体出行行为及群体出行模式。与其他聚类方... 手机信令数据不仅记录个体出行轨迹,同时也为分析城市居民出行模式提供了基础。通过提出一种基于狄利克雷过程混合模型的聚类方法,以从手机信令提取的出行OD(Origin-Destination)为基础,研究个体出行行为及群体出行模式。与其他聚类方法相比,该方法最大的优点在于无需事先指定聚类的数量,并且能够基于数据识别出新的聚类。通过将该方法应用到三亚市的居民出行行为研究中,得到15类个体行为聚类。从而进一步结合城市特征,归纳得出5种典型出行模式,较为全面地反映三亚居民活动的实际情况,为制定差异化的交通政策、精细化交通管理提供支撑。 展开更多
关键词 出行行为 模式聚类 手机信令 狄利克雷混合模型
在线阅读 下载PDF
基于狄利克雷过程混合模型的城市活动聚类方法研究 被引量:1
16
作者 陈仲 《交通运输系统工程与信息》 EI CSCD 北大核心 2020年第6期247-252,共6页
手机信令数据不仅记录个体出行轨迹,也为分析城市活动空间分布特征提供了基础.本文提出一种基于狄利克雷混合模型的城市活动特征聚类方法,以手机信令提取居民出行OD为基础,将每个基站的到发出行量作为表征该基站所处空间位置的活动特征... 手机信令数据不仅记录个体出行轨迹,也为分析城市活动空间分布特征提供了基础.本文提出一种基于狄利克雷混合模型的城市活动特征聚类方法,以手机信令提取居民出行OD为基础,将每个基站的到发出行量作为表征该基站所处空间位置的活动特征,研究特征的聚类方法.引入狄利克雷分布作为先验分布,由中餐馆模型推定特征聚类数量.与其他聚类方法相比,该方法最大的优点在于无需事先指定聚类数量,避免了传统聚类方法的缺陷.将本文方法应用到三亚市城市活动特征聚类当中,结果能够有效地反应不同城市功能组团的活动特征. 展开更多
关键词 城市交通 出行特征 狄利克雷过程混合模型 手机信令
在线阅读 下载PDF
无限最大间隔线性判别投影模型
17
作者 文伟 曹雪菲 +4 位作者 陈渤 韩勋 张学峰 王鹏辉 刘宏伟 《电子与信息学报》 EI CSCD 北大核心 2017年第12期2795-2802,共8页
针对具有多模分布结构的高维数据的分类问题,该文提出一种无限最大间隔线性判别投影(i MMLDP)模型。与现有全局投影方法不同,模型通过联合Dirichlet过程及最大间隔线性判别投影(MMLDP)模型将数据划分为若干个局部区域,并在每一个局部学... 针对具有多模分布结构的高维数据的分类问题,该文提出一种无限最大间隔线性判别投影(i MMLDP)模型。与现有全局投影方法不同,模型通过联合Dirichlet过程及最大间隔线性判别投影(MMLDP)模型将数据划分为若干个局部区域,并在每一个局部学习一个最大边界线性判别投影分类器。组合各局部分类器,实现全局非线性的投影与分类。i MMLDP模型利用贝叶斯框架联合建模,将聚类、投影及分类器进行联合学习,可以有效发掘数据的隐含结构信息,因而,可以较好地对非线性可分数据,尤其是具有多模分布特性数据进行分类。得益于非参数贝叶斯先验技术,可以有效避免模型选择问题,即局部区域划分数量。基于仿真数据集、公共数据集及雷达实测数据集验证了所提方法的有效性。 展开更多
关键词 最大间隔线性判别投影 非参数贝叶斯 dirichlet过程混合模型
在线阅读 下载PDF
DNA甲基化微阵列的非参数贝叶斯聚类算法
18
作者 张林 刘辉 《自动化学报》 EI CSCD 北大核心 2012年第10期1709-1713,共5页
面向Illumina Golden Gate甲基化微阵列数据提出了一种基于模型的聚类算法.算法通过建立贝塔无限混合模型,采用Dirichlet过程作为先验,实现了基于数据和模型的聚类结构的建立,实验结果表明该算法能够有效估计出聚类类别个数、每个聚类... 面向Illumina Golden Gate甲基化微阵列数据提出了一种基于模型的聚类算法.算法通过建立贝塔无限混合模型,采用Dirichlet过程作为先验,实现了基于数据和模型的聚类结构的建立,实验结果表明该算法能够有效估计出聚类类别个数、每个聚类类别的混合权重、每个聚类类别的特征等信息,达到比较理想的聚类效果. 展开更多
关键词 DNA 甲基化微阵列 dirichlet 过程 贝塔混合模型 吉布斯抽样
在线阅读 下载PDF
子空间聚类的非参数模型及变分贝叶斯学习
19
作者 卿湘运 王行愚 《计算机学报》 EI CSCD 北大核心 2007年第8期1333-1343,共11页
子空间聚类的目标是在不同的特征子集上对给定的一组数据归类.此非监督学习方法试图发现数据"在不同表达下的相似"模式,并且引起了相关领域大量的关注和研究.首先扩展Hoff提出的"均值与方差平移"模型为一个新的基... 子空间聚类的目标是在不同的特征子集上对给定的一组数据归类.此非监督学习方法试图发现数据"在不同表达下的相似"模式,并且引起了相关领域大量的关注和研究.首先扩展Hoff提出的"均值与方差平移"模型为一个新的基于特征子集的非参数聚类模型,其优点是能应用变分贝叶斯方法学习模型参数.此模型结合Dirichlet过程混合模型和选择特征子集的非参数模型,能自动选择聚类个数和进行子空间聚类.然后给出基于马尔可夫链蒙特卡罗的参数后验推断算法.出于计算速度上的考虑,提出应用变分贝叶斯方法学习模型参数.在仿真数据上的实验结果及在人脸聚类问题上的应用均表明了此模型能同时选择相关特征和在这些特征上具有相似模式的数据点.在UCI"多特征数据库"上应用无需抽样的变分贝叶斯方法,其实验结果说明此方法能快速推断模型参数. 展开更多
关键词 混合模型 dirichlet过程 非参数贝叶斯 马尔可夫链蒙特卡罗 变分学习
在线阅读 下载PDF
基于标签共现和特征局部相关的心电异常检测方法
20
作者 韩京宇 钱龙 +1 位作者 葛康 毛毅 《计算机科学》 CSCD 北大核心 2023年第3期139-146,共8页
自动的心电异常识别是一个多标签分类问题,多通过对每个标签训练一个二分类器来实现异常识别。由于异常数目多,特征和异常间以及不同异常间的相关性复杂,自动检测的效果并不理想。为了充分利用异常和特征间的依存关系,提出了一种基于异... 自动的心电异常识别是一个多标签分类问题,多通过对每个标签训练一个二分类器来实现异常识别。由于异常数目多,特征和异常间以及不同异常间的相关性复杂,自动检测的效果并不理想。为了充分利用异常和特征间的依存关系,提出了一种基于异常标签共现和特征局部相关(Label Co-occurrence and Feature’s local Pertinence,LCFP)的心电异常识别方法。首先,根据标签共现性和特征局部相关性,为标签构建包含宏特征和微特征的联合特征空间。宏特征采用狄利克雷过程混合模型聚类构建,以区分不同的共现标签集;微特征是原始特征空间的一个子集,用于区分共现标签集中的各个标签。进而,在联合特征空间为每个异常训练一个一对多(One-Versus-All)的概率分类器。其次,为充分利用异常的关联,提出在概率分类器排序基础上区分相关和非相关标签,采用Beta分布自适应地学习锚阈值和相关度阈值,以确定实例的相关标签集。LCFP是一种检测多种心电异常的通用方法,提高了心电异常识别的精度。在两个真实数据集上,F1指标分别提高了4%和22.4%,验证了所提方法的有效性。 展开更多
关键词 心电异常 多标签分类 标签共现 狄利克雷过程混合模型 BETA分布 锚阈值
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部