Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing an...Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing and energy trading confronts security and privacy challenges.In this paper,we exploit consortium blockchain and Directed Acyclic Graph(DAG)to propose a new secure and distributed spectrum sharing and energy trading framework in power IoT,named spectrum-energy chain,where a set of local aggregators(LAGs)cooperatively confirm the identity of the power devices by utilizing consortium blockchain,so as to form a main chain.Then,the local power devices verify spectrum and energy micro-transactions simultaneously but asynchronously to form local spectrum tangle and local energy tangle,respectively.Moreover,an iterative double auction based micro transactions scheme is designed to solve the spectrum and energy pricing and the amount of shared spectrum and energy among power devices.Security analysis and numerical results illustrate that the developed spectrum-energy chain and the designed iterative double auction based microtransactions scheme are secure and efficient for spectrum sharing and energy trading in power IoT.展开更多
In low earth orbit(LEO) and medium earth orbit(MEO) satellite networks, the network topology changes rapidly because of the high relative speed movement of satellites. When some inter-satellite links (ISLs) fail...In low earth orbit(LEO) and medium earth orbit(MEO) satellite networks, the network topology changes rapidly because of the high relative speed movement of satellites. When some inter-satellite links (ISLs) fail, they can not be repaired in a short time. In order to increase the robustness for LEO/MEO satel- lite networks, an effective dynamic routing algorithm is proposed. All the routes to a certain node are found by constructing a destination oriented acyclic directed graph(DOADG) with the node as the destination. In this algorithm, multiple routes are provided, loop-free is guaranteed, and as long as the DOADG maintains, it is not necessary to reroute even if some ISLs fail. Simulation results show that comparing to the conventional routing algorithms, it is more efficient and reliable, costs less transmission overhead and converges faster.展开更多
Causality,the science of cause and effect,has made it possible to create a new family of models.Such models are often referred to as causal models.Unlike those of mathematical,numerical,empirical,or machine learning(M...Causality,the science of cause and effect,has made it possible to create a new family of models.Such models are often referred to as causal models.Unlike those of mathematical,numerical,empirical,or machine learning(ML)nature,causal models hope to tie the cause(s)to the effect(s)pertaining to a phenomenon(i.e.,data generating process)through causal principles.This paper presents one of the first works at creating causal models in the area of structural and construction engineering.To this end,this paper starts with a brief review of the principles of causality and then adopts four causal discovery algorithms,namely,PC(Peter-Clark),FCI(fast causal inference),GES(greedy equivalence search),and GRa SP(greedy relaxation of the sparsest permutation),have been used to examine four phenomena,including predicting the load-bearing capacity of axially loaded members,fire resistance of structural members,shear strength of beams,and resistance of walls against impulsive(blast)loading.Findings from this study reveal the possibility and merit of discovering complete and partial causal models.Finally,this study also proposes two simple metrics that can help assess the performance of causal discovery algorithms.展开更多
基金supported by the National Key R&D Program of China(2020YFB1807801,2020YFB1807800)in part by Project Supported by Engineering Research Center of Mobile Communications,Ministry of Education(cqupt-mct-202003)+2 种基金in part by Key Lab of Information Network Security,Ministry of Public Security under Grant C19603in part by National Natural Science Foundation of China(Grant No.61901067 and 61901013)in part by Chongqing Municipal Natural Science Foundation(Grant No.cstc2020jcyj-msxmX0339).
文摘Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing and energy trading confronts security and privacy challenges.In this paper,we exploit consortium blockchain and Directed Acyclic Graph(DAG)to propose a new secure and distributed spectrum sharing and energy trading framework in power IoT,named spectrum-energy chain,where a set of local aggregators(LAGs)cooperatively confirm the identity of the power devices by utilizing consortium blockchain,so as to form a main chain.Then,the local power devices verify spectrum and energy micro-transactions simultaneously but asynchronously to form local spectrum tangle and local energy tangle,respectively.Moreover,an iterative double auction based micro transactions scheme is designed to solve the spectrum and energy pricing and the amount of shared spectrum and energy among power devices.Security analysis and numerical results illustrate that the developed spectrum-energy chain and the designed iterative double auction based microtransactions scheme are secure and efficient for spectrum sharing and energy trading in power IoT.
基金the National Natural Science Foundation of Tianjin(07JCYBTC14800)
文摘In low earth orbit(LEO) and medium earth orbit(MEO) satellite networks, the network topology changes rapidly because of the high relative speed movement of satellites. When some inter-satellite links (ISLs) fail, they can not be repaired in a short time. In order to increase the robustness for LEO/MEO satel- lite networks, an effective dynamic routing algorithm is proposed. All the routes to a certain node are found by constructing a destination oriented acyclic directed graph(DOADG) with the node as the destination. In this algorithm, multiple routes are provided, loop-free is guaranteed, and as long as the DOADG maintains, it is not necessary to reroute even if some ISLs fail. Simulation results show that comparing to the conventional routing algorithms, it is more efficient and reliable, costs less transmission overhead and converges faster.
文摘Causality,the science of cause and effect,has made it possible to create a new family of models.Such models are often referred to as causal models.Unlike those of mathematical,numerical,empirical,or machine learning(ML)nature,causal models hope to tie the cause(s)to the effect(s)pertaining to a phenomenon(i.e.,data generating process)through causal principles.This paper presents one of the first works at creating causal models in the area of structural and construction engineering.To this end,this paper starts with a brief review of the principles of causality and then adopts four causal discovery algorithms,namely,PC(Peter-Clark),FCI(fast causal inference),GES(greedy equivalence search),and GRa SP(greedy relaxation of the sparsest permutation),have been used to examine four phenomena,including predicting the load-bearing capacity of axially loaded members,fire resistance of structural members,shear strength of beams,and resistance of walls against impulsive(blast)loading.Findings from this study reveal the possibility and merit of discovering complete and partial causal models.Finally,this study also proposes two simple metrics that can help assess the performance of causal discovery algorithms.