Boundary extraction of watershed is an important step in forest landscape research. The boundary of the upriver wa-tershed of the Hunhe River in the sub-alpine Qingyuan County of eastern Liaoning Province, China was e...Boundary extraction of watershed is an important step in forest landscape research. The boundary of the upriver wa-tershed of the Hunhe River in the sub-alpine Qingyuan County of eastern Liaoning Province, China was extracted by digital elevation modeling (DEM) data in ArcInfo8.1. Remote sensing image of the corresponding region was applied to help modify its copy according to Enhanced Thematic Mapper (ETM) image抯 profuse geomorphological structure information. Both the DEM-dependent boundary and modified copy were overlapped with county map and drainage network map to visually check the effects of result. Overlap of county map suggested a nice extraction of the boundary line since the two layers matched precisely, which indicated the DEM-dependent boundary by program was effective and precise. Further upload of drainage network showed discrepancies between the boundary and the drainage network. Altogether, there were three sections of the extraction result that needed to correct. Compared with this extraction boundary, the modified boundary had a better match to the drainage network as well as to the county map. Comprehensive analysis demonstrated that the program extraction has generally fine precision in position and excels the digitized result by hand. The errors of the DEM-dependant extraction are due to the fact that it is difficult for program to recognize sections of complex landform especially altered by human activities, but these errors are discernable and adjustable because the spatial resolution of ETM image is less than that of DEM. This study result proved that application of remote sensing information could help obtain better result when DEM method is used in extraction of watershed boundary.展开更多
Researchers in P.R.China commonly create triangulate irregular networks(TINs) from contours and then convert TINs into digital elevation models(DEMs).However,the DEM produced by this method can not precisely describe ...Researchers in P.R.China commonly create triangulate irregular networks(TINs) from contours and then convert TINs into digital elevation models(DEMs).However,the DEM produced by this method can not precisely describe and simulate key hydrological features such as rivers and drainage borders.Taking a hilly region in southwestern China as a research area and using ArcGISTM software,we analyzed the errors of different interpolations to obtain distributions of the errors and precisions of different algorithms and to provide references for DEM productions.The results show that different interpolation errors satisfy normal distributions,and large error exists near the structure line of the terrain.Furthermore,the results also show that the precision of a DEM interpolated with the Australian National University digital elevation model(ANUDEM) is higher than that interpolated with TIN.The DEM interpolated with TIN is acceptable for generating DEMs in the hilly region of southwestern China.展开更多
A practical method to extract drainage network from DEM (digital elevation model) is introduced. DEM pretreatment includes depression and flat areas treatment. The flow direction of each grid cell in DEM is calculated...A practical method to extract drainage network from DEM (digital elevation model) is introduced. DEM pretreatment includes depression and flat areas treatment. The flow direction of each grid cell in DEM is calculated according to the 8-direction pour point model, and then the flow accumulation grid from the flow direction grid. With the flow accumulation grid, streams are defined according to the given threshold value of flow accumulation. Taking Gufo River watershed as an example, the extraction of drainage network was done from DEM. The results are basically consistent with the digitized drainage network from the relief maps.展开更多
基金This work was supported by Knowledge Innovation Pro-gram Chinese Academy of Sciences (No. KZCX2-SW-320-3 & KZCX3-SW-425).
文摘Boundary extraction of watershed is an important step in forest landscape research. The boundary of the upriver wa-tershed of the Hunhe River in the sub-alpine Qingyuan County of eastern Liaoning Province, China was extracted by digital elevation modeling (DEM) data in ArcInfo8.1. Remote sensing image of the corresponding region was applied to help modify its copy according to Enhanced Thematic Mapper (ETM) image抯 profuse geomorphological structure information. Both the DEM-dependent boundary and modified copy were overlapped with county map and drainage network map to visually check the effects of result. Overlap of county map suggested a nice extraction of the boundary line since the two layers matched precisely, which indicated the DEM-dependent boundary by program was effective and precise. Further upload of drainage network showed discrepancies between the boundary and the drainage network. Altogether, there were three sections of the extraction result that needed to correct. Compared with this extraction boundary, the modified boundary had a better match to the drainage network as well as to the county map. Comprehensive analysis demonstrated that the program extraction has generally fine precision in position and excels the digitized result by hand. The errors of the DEM-dependant extraction are due to the fact that it is difficult for program to recognize sections of complex landform especially altered by human activities, but these errors are discernable and adjustable because the spatial resolution of ETM image is less than that of DEM. This study result proved that application of remote sensing information could help obtain better result when DEM method is used in extraction of watershed boundary.
基金Funded by the Natural Science Foundation of Chongqing under Grant No. CSTC2006AB1015.
文摘Researchers in P.R.China commonly create triangulate irregular networks(TINs) from contours and then convert TINs into digital elevation models(DEMs).However,the DEM produced by this method can not precisely describe and simulate key hydrological features such as rivers and drainage borders.Taking a hilly region in southwestern China as a research area and using ArcGISTM software,we analyzed the errors of different interpolations to obtain distributions of the errors and precisions of different algorithms and to provide references for DEM productions.The results show that different interpolation errors satisfy normal distributions,and large error exists near the structure line of the terrain.Furthermore,the results also show that the precision of a DEM interpolated with the Australian National University digital elevation model(ANUDEM) is higher than that interpolated with TIN.The DEM interpolated with TIN is acceptable for generating DEMs in the hilly region of southwestern China.
文摘A practical method to extract drainage network from DEM (digital elevation model) is introduced. DEM pretreatment includes depression and flat areas treatment. The flow direction of each grid cell in DEM is calculated according to the 8-direction pour point model, and then the flow accumulation grid from the flow direction grid. With the flow accumulation grid, streams are defined according to the given threshold value of flow accumulation. Taking Gufo River watershed as an example, the extraction of drainage network was done from DEM. The results are basically consistent with the digitized drainage network from the relief maps.