Silicon-based material is an important anode material for next-generation lithium-ion batteries.In order to overcome its shortcomings,carbon coating is often employed to improve the electrochemical performance.However...Silicon-based material is an important anode material for next-generation lithium-ion batteries.In order to overcome its shortcomings,carbon coating is often employed to improve the electrochemical performance.However,the carbon source,carbon content,and different contact and mixing schemes between carbon sources and silicon are all complex factors and need to be clarified.In this study,nano-silicon is coated by the chemical vapor deposition method using different carbon sources,such as acetylene,methane,propane,and propylene.Carbon content after coating is designed to stay at the same level to reduce the experimental error.Results show the sample with higher conductivity provides higher cycle performance.Propylene is the best choice of the four carbon sources studied in this work.These results indicate that the selection of the carbon source is an important factor that plays a significant role in electrochemical performance.展开更多
Because of the differences of hydrocarbon accumulation between in-source and out-of-source oil pools, the demand for source kitchen is different. Based on the establishment of source-to-reservoir correlation in the kn...Because of the differences of hydrocarbon accumulation between in-source and out-of-source oil pools, the demand for source kitchen is different. Based on the establishment of source-to-reservoir correlation in the known conventional accumulations, and the characteristics of shale oil source kitchens as well, this paper discusses the differences of source kitchens for the formation of both conventional and shale oils. The formation of conventional oil pools is a process of hydrocarbons enriching from disperse state under the action of buoyancy, which enables most of the oil pools to be formed outside the source kitchens. The source rock does not necessarily have high abundance of organic matter, but has to have high efficiency and enough amount of hydrocarbon expulsion. The TOC threshold of source rocks for conventional oil accumulations is 0.5%, with the best TOC window ranging from 1% to 3%. The oil pools formed inside the source kitchens, mainly shale oil, are the retention of oil and gas in the source rock and there is no large-scale hydrocarbon migration and enrichment process happened, which requires better quality and bigger scale of source rocks. The threshold of TOC for medium to high maturity of shale oil is 2%, with the best range falling in 3%–5%. Medium to low mature shale oil resource has a TOC threshold of 6%, and the higher the better in particular. The most favorable kerogen for both high and low-mature shale oils is oil-prone type of I–II1. Carrying out source rock quality and classification evaluation and looking for large-scale and high-quality source rock enrichment areas are a scientific issue that must be paid attention to when exploration activity changes from out-of-source regions to in-source kitchen areas. The purpose is to provide theoretical guidance for the upcoming shale oil enrichment area selection, economic discovery and objective evaluation of resource potential.展开更多
基金Project supported by Beijing Natural Science Foundation(Grant No.2182065)the National Natural Science Foundation of China(Grant No.11922202)。
文摘Silicon-based material is an important anode material for next-generation lithium-ion batteries.In order to overcome its shortcomings,carbon coating is often employed to improve the electrochemical performance.However,the carbon source,carbon content,and different contact and mixing schemes between carbon sources and silicon are all complex factors and need to be clarified.In this study,nano-silicon is coated by the chemical vapor deposition method using different carbon sources,such as acetylene,methane,propane,and propylene.Carbon content after coating is designed to stay at the same level to reduce the experimental error.Results show the sample with higher conductivity provides higher cycle performance.Propylene is the best choice of the four carbon sources studied in this work.These results indicate that the selection of the carbon source is an important factor that plays a significant role in electrochemical performance.
基金Supported by the China National Science and Technology Major Project(2016ZX05046,2017ZX05001)RIPED Scientific Research and Technology Development Project(2018ycq02)。
文摘Because of the differences of hydrocarbon accumulation between in-source and out-of-source oil pools, the demand for source kitchen is different. Based on the establishment of source-to-reservoir correlation in the known conventional accumulations, and the characteristics of shale oil source kitchens as well, this paper discusses the differences of source kitchens for the formation of both conventional and shale oils. The formation of conventional oil pools is a process of hydrocarbons enriching from disperse state under the action of buoyancy, which enables most of the oil pools to be formed outside the source kitchens. The source rock does not necessarily have high abundance of organic matter, but has to have high efficiency and enough amount of hydrocarbon expulsion. The TOC threshold of source rocks for conventional oil accumulations is 0.5%, with the best TOC window ranging from 1% to 3%. The oil pools formed inside the source kitchens, mainly shale oil, are the retention of oil and gas in the source rock and there is no large-scale hydrocarbon migration and enrichment process happened, which requires better quality and bigger scale of source rocks. The threshold of TOC for medium to high maturity of shale oil is 2%, with the best range falling in 3%–5%. Medium to low mature shale oil resource has a TOC threshold of 6%, and the higher the better in particular. The most favorable kerogen for both high and low-mature shale oils is oil-prone type of I–II1. Carrying out source rock quality and classification evaluation and looking for large-scale and high-quality source rock enrichment areas are a scientific issue that must be paid attention to when exploration activity changes from out-of-source regions to in-source kitchen areas. The purpose is to provide theoretical guidance for the upcoming shale oil enrichment area selection, economic discovery and objective evaluation of resource potential.