The self-assembly of symmetric diblock copolymers confined in the channels of variously shaped cross sections (regu- lar triangles, squares, and ellipses) is investigated using a simulated annealing technique. In th...The self-assembly of symmetric diblock copolymers confined in the channels of variously shaped cross sections (regu- lar triangles, squares, and ellipses) is investigated using a simulated annealing technique. In the bulk, the studied symmetric diblock copolymers form a lamellar structure with period LL. The geometry and surface property of the confining channels have a large effect on the self-assembled structures and the orientation of the lamellar structures. Stacked perpendicular lamellae with period LL are observed for neutral surfaces regardless of the channel shape and size, but each lamella is in the shape of the corresponding channel's cross section. In the case of triangle-shaped cross sections, stacked parallel lamel- lae are the majority morphologies for weakly selective surfaces, while morphologies including a triangular-prism-shaped B-cylinder and multiple tridentate lamellae are obtained for strongly selective surfaces. In the cases of square-shaped and ellipse-shaped cross sections, concentric lamellae are the signature morphology for strongly selective surfaces, whereas for weakly selective surfaces, stacked parallel lamellae, and several types of folding lamellae are obtained in the case of square-shaped cross sections, and stacked parallel lamellae are the majority morphologies in the case of ellipse-shaped cross sections when the length of the minor axis is commensurate with the bulk lamellar period. The mean-square end- to-end distance, the average contact number between different species and the surface concentration of the A-monomers are computed to elucidate the mechanisms of the formation of the different morphologies. It is found that the resulting morphology is a consequence of competition among the chain stretching, interfacial energy, and surface energy. Our results suggest that the self-assembled morphology and the orientation of lamellae can be manipulated by the shape, the size, and the surface property of the confining channels.展开更多
The phase behaviours of diblock copolymers under cylindrical confinement are studied in two-dimensional space by using the self-consistent field theory. Several phase parameters are adjusted to investigate the cylindr...The phase behaviours of diblock copolymers under cylindrical confinement are studied in two-dimensional space by using the self-consistent field theory. Several phase parameters are adjusted to investigate the cylindrical-confinement-induced phase behaviours of diblock copolymers. A series of lamella-cylinder mixture phases, such as the mixture of broken-lamellae and cylinders and the mixture of square-lamellae and cylinders, are observed by varying the phase parameters, in which the behaviours of these mixture phases are discussed in the corresponding phase diagrams. Furthermore, the free energies of these mixture phases are investigated to illustrate their evolution processes. Our results are compared with the available observations from the experiments and simulations respectively, and they are in good agreement and provide an insight into the phase behaviours under cylindrical confinement.展开更多
The phase behaviors in a binary mixture of diblock copolymers confined between two parallel walls are investigated by using a cell dynamics simulation of the time-dependent Ginzburg-Landau theory.The morphological dep...The phase behaviors in a binary mixture of diblock copolymers confined between two parallel walls are investigated by using a cell dynamics simulation of the time-dependent Ginzburg-Landau theory.The morphological dependence of the wall-block interaction and the distance between walls(confinement degree) has been systematically studied,and the effect of repulsive interactions between different monomers is also discussed.It is interesting that multiple novel morphological transitions are observed by changing these factors,and various multilayered sandwich structures are formed in the mixture.Furthermore,the parametric dependence and physical reasons for the microdomain growth and orientational order transitions are discussed.From the simulation,we find that much richer morphologies can form in a binary mixture of diblock copolymers than those in a pure diblock copolymer.Our results provide an insight into the phase behaviors under parallel wall confinement and may provide guidance for experimentalists.This model system can also give a simple way to realize orientational order transition in soft materials through confinement.展开更多
The surface-induced effect on the morphologies of lamella-forming diblock copolymers in nanorod arrays is studied by using the self-consistent field theory. In the simulation study, a rich variety of novel morphologie...The surface-induced effect on the morphologies of lamella-forming diblock copolymers in nanorod arrays is studied by using the self-consistent field theory. In the simulation study, a rich variety of novel morphologies are observed by variations in the strength of the surface field for the diblock copolymers. Different surface-field-induced effects are examined for the diblock copolymers in the arrays with distinct preferential surfaces. It is observed that the majority-block preferential surfaces have more obvious induced effects than those of minority-block preferential surfaces. The strong surface fields exhibit different behaviours from those observed in the weak surface fields, by which the morphologies possess cylindrical symmetries. Results from this research deepen the knowledge of surface-induced effects in a confinement system, which may aid the fabrication of polymer-based na^omaterials.展开更多
We present a thermodynamically consistent model for diblock copolymer melts coupled with an electric field derived using the Onsager linear response theory.We compare the model with the thermodynamically inconsistent ...We present a thermodynamically consistent model for diblock copolymer melts coupled with an electric field derived using the Onsager linear response theory.We compare the model with the thermodynamically inconsistent one previously used for the coupled system to highlight their differences in describing transient dynamics.展开更多
Block copolymers are a class of soft matter that self-assemble to form ordered morphologies on the scale of nanome- ters, making them ideal materials for various applications. These applications directly depend on the...Block copolymers are a class of soft matter that self-assemble to form ordered morphologies on the scale of nanome- ters, making them ideal materials for various applications. These applications directly depend on the shape and size of the self-assembled morphologies, and hence, a high degree of control over the self-assembly is desired. Grafting block copolymer chains onto a substrate to form copolymer brushes is a versatile method to fabricate functional surfaces. Such surfaces demonstrate a response to their environment, i.e., they change their surface topography in response to different external conditions. Furthermore, such surfaces may possess nanoscale patterns, which are important for some applica- tions; however, such patterns may not form with spun-cast films under the same condition. In this review, we summarize the recent progress of the self-assembly of block copolymers grafted onto a flat substrate. We mainly concentrate on the self-assembled morphologies of end-grafted AB dibloek eopolymers, junction p0int-grafted AB diblock copolymers (i.e., Y-shaped brushes), and end-grafted ABA triblock copolymers. Special emphasis is placed on theoretical and simulation progress.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11204215,51302187,20990234,20925414,21204040,and 91227121)the Natural Science Foundation of Tianjin City,China(Grant Nos.12JCYBJC32500 and 14JCZDJC32100)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(Grant No.IRT1257)the 111 Project.A.C.Shi gratefully acknowledges the supports from the Natural Sciences and Engineering Research Council(NSERC)of Canada
文摘The self-assembly of symmetric diblock copolymers confined in the channels of variously shaped cross sections (regu- lar triangles, squares, and ellipses) is investigated using a simulated annealing technique. In the bulk, the studied symmetric diblock copolymers form a lamellar structure with period LL. The geometry and surface property of the confining channels have a large effect on the self-assembled structures and the orientation of the lamellar structures. Stacked perpendicular lamellae with period LL are observed for neutral surfaces regardless of the channel shape and size, but each lamella is in the shape of the corresponding channel's cross section. In the case of triangle-shaped cross sections, stacked parallel lamel- lae are the majority morphologies for weakly selective surfaces, while morphologies including a triangular-prism-shaped B-cylinder and multiple tridentate lamellae are obtained for strongly selective surfaces. In the cases of square-shaped and ellipse-shaped cross sections, concentric lamellae are the signature morphology for strongly selective surfaces, whereas for weakly selective surfaces, stacked parallel lamellae, and several types of folding lamellae are obtained in the case of square-shaped cross sections, and stacked parallel lamellae are the majority morphologies in the case of ellipse-shaped cross sections when the length of the minor axis is commensurate with the bulk lamellar period. The mean-square end- to-end distance, the average contact number between different species and the surface concentration of the A-monomers are computed to elucidate the mechanisms of the formation of the different morphologies. It is found that the resulting morphology is a consequence of competition among the chain stretching, interfacial energy, and surface energy. Our results suggest that the self-assembled morphology and the orientation of lamellae can be manipulated by the shape, the size, and the surface property of the confining channels.
基金supported by the National Natural Science Foundation of China (Grant Nos. 20574052 and 20774066)the Program for New Century Excellent Talents in University, China (Grant No. NCET-05-0538)the Natural Science Foundation of Zhejiang Province, China (Grant Nos. R404047, Y4090174, and Y405553)
文摘The phase behaviours of diblock copolymers under cylindrical confinement are studied in two-dimensional space by using the self-consistent field theory. Several phase parameters are adjusted to investigate the cylindrical-confinement-induced phase behaviours of diblock copolymers. A series of lamella-cylinder mixture phases, such as the mixture of broken-lamellae and cylinders and the mixture of square-lamellae and cylinders, are observed by varying the phase parameters, in which the behaviours of these mixture phases are discussed in the corresponding phase diagrams. Furthermore, the free energies of these mixture phases are investigated to illustrate their evolution processes. Our results are compared with the available observations from the experiments and simulations respectively, and they are in good agreement and provide an insight into the phase behaviours under cylindrical confinement.
基金Project supported by the National Natural Science Foundation of China (Grant No. 20673070)the Natural Science Foundation of Shanxi Province (Grant No. 2007011055)+1 种基金the Natural Science Foundation for Young Scientists of Shanxi Province (Grant No. 2011021008-1)the Soft Science Program of Shanxi Province (Grant No. 2011041015-01)
文摘The phase behaviors in a binary mixture of diblock copolymers confined between two parallel walls are investigated by using a cell dynamics simulation of the time-dependent Ginzburg-Landau theory.The morphological dependence of the wall-block interaction and the distance between walls(confinement degree) has been systematically studied,and the effect of repulsive interactions between different monomers is also discussed.It is interesting that multiple novel morphological transitions are observed by changing these factors,and various multilayered sandwich structures are formed in the mixture.Furthermore,the parametric dependence and physical reasons for the microdomain growth and orientational order transitions are discussed.From the simulation,we find that much richer morphologies can form in a binary mixture of diblock copolymers than those in a pure diblock copolymer.Our results provide an insight into the phase behaviors under parallel wall confinement and may provide guidance for experimentalists.This model system can also give a simple way to realize orientational order transition in soft materials through confinement.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.20374050,20934004,21074096,50773072,and 90403022)the Outstanding Youth Fund of China (Grant No.20525416)+3 种基金the National Basic Research Program of China(Grant No.2005CB623800)Program for New Century Excellent Talents in University (Grant No.NCET-05-0538)the Natural Science Foundation of Zhejiang Province (Grant Nos.Y4090174 and Y6100033)the Science Technology Development Plan of Wenzhou City,China (Grant No.H20080041)
文摘The surface-induced effect on the morphologies of lamella-forming diblock copolymers in nanorod arrays is studied by using the self-consistent field theory. In the simulation study, a rich variety of novel morphologies are observed by variations in the strength of the surface field for the diblock copolymers. Different surface-field-induced effects are examined for the diblock copolymers in the arrays with distinct preferential surfaces. It is observed that the majority-block preferential surfaces have more obvious induced effects than those of minority-block preferential surfaces. The strong surface fields exhibit different behaviours from those observed in the weak surface fields, by which the morphologies possess cylindrical symmetries. Results from this research deepen the knowledge of surface-induced effects in a confinement system, which may aid the fabrication of polymer-based na^omaterials.
基金partially supported by the National Natural Science Foundation of China(Grant Nos.11971051 and U1930402)partially supported by National Science Foundation grants(award DMS-1815921,1954532 and OIA-1655740)a GEAR award from SC EPSCoR/IDeA Program。
文摘We present a thermodynamically consistent model for diblock copolymer melts coupled with an electric field derived using the Onsager linear response theory.We compare the model with the thermodynamically inconsistent one previously used for the coupled system to highlight their differences in describing transient dynamics.
基金supported by the National Natural Science Foundation of China(Grant Nos.20990234,20925414,and 91227121)the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT1257)+1 种基金the Programme of Introducing Talents of Discipline to Universities,Chinaby the Tianhe No.1,China
文摘Block copolymers are a class of soft matter that self-assemble to form ordered morphologies on the scale of nanome- ters, making them ideal materials for various applications. These applications directly depend on the shape and size of the self-assembled morphologies, and hence, a high degree of control over the self-assembly is desired. Grafting block copolymer chains onto a substrate to form copolymer brushes is a versatile method to fabricate functional surfaces. Such surfaces demonstrate a response to their environment, i.e., they change their surface topography in response to different external conditions. Furthermore, such surfaces may possess nanoscale patterns, which are important for some applica- tions; however, such patterns may not form with spun-cast films under the same condition. In this review, we summarize the recent progress of the self-assembly of block copolymers grafted onto a flat substrate. We mainly concentrate on the self-assembled morphologies of end-grafted AB dibloek eopolymers, junction p0int-grafted AB diblock copolymers (i.e., Y-shaped brushes), and end-grafted ABA triblock copolymers. Special emphasis is placed on theoretical and simulation progress.