Objective To evaluate the value of texture features derived from intravoxel incoherent motion(IVIM) parameters for differentiating pancreatic neuroendocrine tumor(pNET) from pancreatic adenocarcinoma(PAC).Methods Eigh...Objective To evaluate the value of texture features derived from intravoxel incoherent motion(IVIM) parameters for differentiating pancreatic neuroendocrine tumor(pNET) from pancreatic adenocarcinoma(PAC).Methods Eighteen patients with pNET and 32 patients with PAC were retrospectively enrolled in this study. All patients underwent diffusion-weighted imaging with 10 b values used(from 0 to 800 s/mm2). Based on IVIM model, perfusion-related parameters including perfusion fraction(f), fast component of diffusion(Dfast) and true diffusion parameter slow component of diffusion(Dslow) were calculated on a voxel-by-voxel basis and reorganized into gray-encoded parametric maps. The mean value of each IVIM parameter and texture features [Angular Second Moment(ASM), Inverse Difference Moment(IDM), Correlation, Contrast and Entropy] values of IVIM parameters were measured. Independent sample t-test or Mann-Whitney U test were performed for the betweengroup comparison of quantitative data. Regression model was established by using binary logistic regression analysis, and receiver operating characteristic(ROC) curve was plotted to evaluate the diagnostic efficiency.Results The mean f value of the pNET group were significantly higher than that of the PAC group(27.0% vs. 19.0%, P = 0.001), while the mean values of Dfast and Dslow showed no significant differences between the two groups. All texture features(ASM, IDM, Correlation, Contrast and Entropy) of each IVIM parameter showed significant differences between the pNET and PAC groups(P = 0.000-0.043). Binary logistic regression analysis showed that texture ASM of Dfast and texture Correlation of Dslow were considered as the specific imaging variables for the differential diagnosis of pNET and PAC. ROC analysis revealed that multiple texture features presented better diagnostic performance than IVIM parameters(AUC 0.849-0.899 vs. 0.526-0.776), and texture ASM of Dfast combined with Correlation of Dslow in the model of logistic regression had largest area under ROC curve for distinguishing pNET from PAC(AUC 0.934, cutoff 0.378, sensitivity 0.889, specificity 0.854). Conclusion Texture analysis of IVIM parameters could be an effective and noninvasive tool to differentiate pNET from PAC.展开更多
Objective To investigate the difference in texture features on diffusion weighted imaging(DWI) images between breast benign and malignant tumors.Methods Patients including 56 with mass-like breast cancer, 16 with brea...Objective To investigate the difference in texture features on diffusion weighted imaging(DWI) images between breast benign and malignant tumors.Methods Patients including 56 with mass-like breast cancer, 16 with breast fibroadenoma, and 4 with intraductal papilloma of breast treated in the Hainan Hospital of Chinese PLA General Hospital were retrospectively enrolled in this study, and allocated to the benign group(20 patients) and the malignant group(56 patients) according to the post-surgically pathological results. Texture analysis was performed on axial DWI images, and five characteristic parameters including Angular Second Moment(ASM), Contrast, Correlation, Inverse Difference Moment(IDM), and Entropy were calculated. Independent sample t-test and Mann-Whitney U test were performed for intergroup comparison. Regression model was established by using Binary Logistic regression analysis, and receiver operating characteristic curve(ROC) analysis was carried out to evaluate the diagnostic efficiency. Results The texture features ASM, Contrast, Correlation and Entropy showed significant differences between the benign and malignant breast tumor groups(PASM= 0.014, Pcontrast= 0.019, Pcorrelation= 0.010, Pentropy= 0.007). The area under the ROC curve was 0.685, 0.681, 0.754, and 0.683 respectively for the positive texture variables mentioned above, and that for the combined variables(ASM, Contrast, and Entropy) was 0.802 in the model of Logistic regression. Binary Logistic regression analysis demonstrated that ASM, Contrast and Entropy were considered as thespecific imaging variables for the differential diagnosis of breast benign and malignant tumors.Conclusion The texture analysis of DWI may be a simple and effective tool in the differential diagnosis between breast benign and malignant tumors.展开更多
Latent tuberculosis infection(LTBI)has become a major source of active tuberculosis(ATB).Although the tuberculin skin test and interferon-gamma release assay can be used to diagnose LTBI,these methods can only differe...Latent tuberculosis infection(LTBI)has become a major source of active tuberculosis(ATB).Although the tuberculin skin test and interferon-gamma release assay can be used to diagnose LTBI,these methods can only differentiate infected individuals from healthy ones but cannot discriminate between LTBI and ATB.Thus,the diagnosis of LTBI faces many challenges,such as the lack of effective biomarkers from Mycobacterium tuberculosis(MTB)for distinguishing LTBI,the low diagnostic efficacy of biomarkers derived from the human host,and the absence of a gold standard to differentiate between LTBI and ATB.Sputum culture,as the gold standard for diagnosing tuberculosis,is time-consuming and cannot distinguish between ATB and LTBI.In this article,we review the pathogenesis of MTB and the immune mechanisms of the host in LTBI,including the innate and adaptive immune responses,multiple immune evasion mechanisms of MTB,and epigenetic regulation.Based on this knowledge,we summarize the current status and challenges in diagnosing LTBI and present the application of machine learning(ML)in LTBI diagnosis,as well as the advantages and limitations of ML in this context.Finally,we discuss the future development directions of ML applied to LTBI diagnosis.展开更多
Atrial fibrillation(AF)is the most common sustained cardiac arrhythmia,significantly impacting patients’quality of life and increasing the risk of death,stroke,heart failure,and dementia.Over the past two decades,the...Atrial fibrillation(AF)is the most common sustained cardiac arrhythmia,significantly impacting patients’quality of life and increasing the risk of death,stroke,heart failure,and dementia.Over the past two decades,there have been significant breakthroughs in AF risk prediction and screening,stroke prevention,rhythm control,catheter ablation,and integrated management.During this period,the scale,quality,and experience of AF management in China have greatly improved,providing a solid foundation for the development of guidelines for the diagnosis and management of AF.To further promote standardized AF management,and apply new technologies and concepts to clinical practice in a timely and comprehensive manner,the Chinese Society of Cardiology of the Chinese Medical Association and the Heart Rhythm Committee of the Chinese Society of Biomedical Engineering have jointly developed the Chinese Guidelines for the Diagnosis and Management of Atrial Fibrillation.The guidelines have comprehensively elaborated on various aspects of AF management and proposed the CHA2DS2-VASc-60 stroke risk score based on the characteristics of AF in the Asian population.The guidelines have also reevaluated the clinical application of AF screening,emphasized the significance of early rhythm control,and highlighted the central role of catheter ablation in rhythm control.展开更多
Myocarditis is a disease process that every emergency physician fears missing.Its severity can be mild to life-threatening,and many cases are likely undetected because they are subclinical with nonspecifi c signs.[1]S...Myocarditis is a disease process that every emergency physician fears missing.Its severity can be mild to life-threatening,and many cases are likely undetected because they are subclinical with nonspecifi c signs.[1]Subtle cardiac signs may be overshadowed by systemic symptoms of the underlying infectious process.Fever,myalgias,lethargy,symptoms commonly associated with viral syndrome,can mask the life-threatening myocarditis that may be present.In fact,in the United States Myocarditis Treatment Trial,almost 90%of patients reported symptoms consistent with a viral prodrome.[2]Ammirati et al[3]reported that 27%of patients with myocarditis had either reduced left ventricular ejection fraction,ventricular arrhythmias,or low cardiac output.Here,we present a case report,in which handheld point-of-care ultrasound was utilized at the bedside to aid in the critical diagnosis of myocarditis.With the additional information provided through this imaging modality,this patient was able to be transferred to the appropriate tertiary care facility in an expeditious manner and receive possible defi nitive treatment.展开更多
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection.[1,2]Septic shock,the most severe form of sepsis,is characterized by circulatory and cellular/metabolic abnor...Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection.[1,2]Septic shock,the most severe form of sepsis,is characterized by circulatory and cellular/metabolic abnormalities,and can increase mortality to>40%.[1-3]Early recognition and risk stratification of septic shock are crucial but challenging because of the heterogeneity of its presentation and progression.展开更多
Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indis...Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indispensable for guaranteeing the secure and optimal functionality of the batteries.The impedance spectrum has garnered growing interest due to its ability to provide a valuable understanding of material characteristics and electrochemical processes.To inspire further progress in the investigation and application of the battery impedance spectrum,this paper provides a comprehensive review of the determination and utilization of the impedance spectrum.The sources of impedance inaccuracies are systematically analyzed in terms of frequency response characteristics.The applicability of utilizing diverse impedance features for the diagnosis and prognosis of batteries is further elaborated.Finally,challenges and prospects for future research are discussed.展开更多
An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption l...An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety.展开更多
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ...The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise).展开更多
Early non-invasive diagnosis of coronary heart disease(CHD)is critical.However,it is challenging to achieve accurate CHD diagnosis via detecting breath.In this work,heterostructured complexes of black phosphorus(BP)an...Early non-invasive diagnosis of coronary heart disease(CHD)is critical.However,it is challenging to achieve accurate CHD diagnosis via detecting breath.In this work,heterostructured complexes of black phosphorus(BP)and two-dimensional carbide and nitride(MXene)with high gas sensitivity and photo responsiveness were formulated using a self-assembly strategy.A light-activated virtual sensor array(LAVSA)based on BP/Ti_(3)C_(2)Tx was prepared under photomodulation and further assembled into an instant gas sensing platform(IGSP).In addition,a machine learning(ML)algorithm was introduced to help the IGSP detect and recognize the signals of breath samples to diagnose CHD.Due to the synergistic effect of BP and Ti_(3)C_(2)Tx as well as photo excitation,the synthesized heterostructured complexes exhibited higher performance than pristine Ti_(3)C_(2)Tx,with a response value 26%higher than that of pristine Ti_(3)C_(2)Tx.In addition,with the help of a pattern recognition algorithm,LAVSA successfully detected and identified 15 odor molecules affiliated with alcohols,ketones,aldehydes,esters,and acids.Meanwhile,with the assistance of ML,the IGSP achieved 69.2%accuracy in detecting the breath odor of 45 volunteers from healthy people and CHD patients.In conclusion,an immediate,low-cost,and accurate prototype was designed and fabricated for the noninvasive diagnosis of CHD,which provided a generalized solution for diagnosing other diseases and other more complex application scenarios.展开更多
Background Acute Stanford Type A Aortic Dissection(ATAAD)is a critical medical emergency characterized by significant morbidity and mortality.This study aims to identify specific gene expression patterns and RNA modif...Background Acute Stanford Type A Aortic Dissection(ATAAD)is a critical medical emergency characterized by significant morbidity and mortality.This study aims to identify specific gene expression patterns and RNA modification associated with ATAAD.Methods The GSE153434 dataset was obtained from the Gene Expression Omnibus(GEO)database.Differential expression analysis was conducted to identify differential expression genes(DEGs)associated with ATAAD.To validate the involvement of RNA modification in ATAAD,RNA modification-related genes(M6A,M1A,M5C,APA,A-to-I)were acquired from GeneCards,following by Least Absolute Shrinkage and Selection Operator(LASSO)regression analysis.A gene prediction signature consisting of key genes was established,and Real-time PCR was used to validate the gene expression in clinical samples.The patients were then divided into high and low-risk groups,and subsequent enrichment analysis,including Gene Ontology(GO),Kyoto Encyclopedia of Genes and Genomes(KEGG),Gene Set Enrichment Analysis(GSEA),Gene Set Variation Analysis(GSVA),and assessments of immune infiltration.A co-expression network analysis(WGCNA)was performed to explore gene-phenotype relationships and identify key genes.Results A total of 45 RNA modification genes were acquired.Six gene signatures(YTHDC1,WTAP,CFI,ADARB1,ADARB2,TET3)were developed for ATAAD diagnosis and risk stratification.Enrichment analysis suggested the potential involvement of inflammation and extracellular matrix pathways in the progression of ATAAD.The incorporation of pertinent genes from the GSE147026 dataset into the six-gene signature further validated the model's effectiveness.A significant upregulation in WTAP,ADARB2,and TET3 expression,whereas YTHDC1 exhibited a noteworthy downregulation in the ATAAD group.Conclusion Six-gene signature could serve as an efficient model for predicting the diagnosis of ATAAD.展开更多
Correction to:Nuclear Science and Techniques(2024)35:61 https://doi.org/10.1007/s41365-024-01421-5 In this article,the figures were wrongly numbered.The Fig.7 and 8 should have been Fig.11 and 12.The Fig.9,10,11,and 1...Correction to:Nuclear Science and Techniques(2024)35:61 https://doi.org/10.1007/s41365-024-01421-5 In this article,the figures were wrongly numbered.The Fig.7 and 8 should have been Fig.11 and 12.The Fig.9,10,11,and 12 should have been 7,8,9 and 10.The original article has been corrected.展开更多
Cardiovascular computed tomography angiography(CTA)is a widely used imaging modality in the diagnosis of cardiovascular disease.Advancements in CT imaging technology have further advanced its applications from high di...Cardiovascular computed tomography angiography(CTA)is a widely used imaging modality in the diagnosis of cardiovascular disease.Advancements in CT imaging technology have further advanced its applications from high diagnostic value to minimising radiation exposure to patients.In addition to the standard application of assessing vascular lumen changes,CTA-derived applications including 3D printed personalised models,3D visualisations such as virtual endoscopy,virtual reality,augmented reality and mixed reality,as well as CT-derived hemodynamic flow analysis and fractional flow reserve(FFRCT)greatly enhance the diagnostic performance of CTA in cardiovascular disease.The widespread application of artificial intelligence in medicine also significantly contributes to the clinical value of CTA in cardiovascular disease.Clinical value of CTA has extended from the initial diagnosis to identification of vulnerable lesions,and prediction of disease extent,hence improving patient care and management.In this review article,as an active researcher in cardiovascular imaging for more than 20 years,I will provide an overview of cardiovascular CTA in cardiovascular disease.It is expected that this review will provide readers with an update of CTA applications,from the initial lumen assessment to recent developments utilising latest novel imaging and visualisation technologies.It will serve as a useful resource for researchers and clinicians to judiciously use the cardiovascular CT in clinical practice.展开更多
To the editor:Psychiatric theory,policy and practice are currently grappling with the risks and opportunities presented by artificial intelligence(AI)applications in mental healthcare.Synthesising data to generate dia...To the editor:Psychiatric theory,policy and practice are currently grappling with the risks and opportunities presented by artificial intelligence(AI)applications in mental healthcare.Synthesising data to generate diagnosis is an aspect of mental healthcare where AI is anticipated to have the greatest and soonest impact.1-4 While such technologies remain some distance from clinical application,preliminary evidence suggests AI-derived classifications may predict certain treatment outcomes and clinical trajectories,and could soon become available to supplement or replace traditional manual-based diagnostic assessment.展开更多
Rheumatoid arthritis(RA)is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability,thus adversely affec...Rheumatoid arthritis(RA)is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability,thus adversely affecting locomotion ability and life quality.Consequently,good prognosis heavily relies on the early diagnosis and effective therapeutic monitoring of RA.Activatable fluorescent probes play vital roles in the detection and imaging of biomarkers for disease diagnosis and in vivo imaging.Herein,we review the fluorescent probes developed for the detection and imaging of RA biomarkers,namely reactive oxygen/nitrogen species(hypochlorous acid,peroxynitrite,hydroxyl radical,nitroxyl),pH,and cysteine,and address the related challenges and prospects to inspire the design of novel fluorescent probes and the improvement of their performance in RA studies.展开更多
The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory in...The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory infections,such as influenza-like illness(ILI).Accurate prediction models for ILI cases are crucial in enabling governments to implement necessary measures and persuade individuals to adopt personal precautions against the disease.This paper aims to provide a forecasting model for ILI cases with actual cases.We propose a specific model utilizing the partial differential equation(PDE)that will be developed and validated using real-world data obtained from the Chinese National Influenza Center.Our model combines the effects of transboundary spread among regions in China mainland and human activities’impact on ILI transmission dynamics.The simulated results demonstrate that our model achieves excellent predictive performance.Additionally,relevant factors influencing the dissemination are further examined in our analysis.Furthermore,we investigate the effectiveness of travel restrictions on ILI cases.Results can be used to utilize to mitigate the spread of disease.展开更多
A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stres...A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method.展开更多
Accurate aging diagnosis is crucial for the health and safety management of lithium-ion batteries in electric vehicles.Despite significant advancements achieved by data-driven methods,diagnosis accuracy remains constr...Accurate aging diagnosis is crucial for the health and safety management of lithium-ion batteries in electric vehicles.Despite significant advancements achieved by data-driven methods,diagnosis accuracy remains constrained by the high costs of check-up tests and the scarcity of labeled data.This paper presents a framework utilizing self-supervised machine learning to harness the potential of unlabeled data for diagnosing battery aging in electric vehicles during field operations.We validate our method using battery degradation datasets collected over more than two years from twenty real-world electric vehicles.Our analysis comprehensively addresses cell inconsistencies,physical interpretations,and charging uncertainties in real-world applications.This is achieved through self-supervised feature extraction using random short charging sequences in the main peak of incremental capacity curves.By leveraging inexpensive unlabeled data in a self-supervised approach,our method demonstrates improvements in average root mean square errors of 74.54%and 60.50%in the best and worst cases,respectively,compared to the supervised benchmark.This work underscores the potential of employing low-cost unlabeled data with self-supervised machine learning for effective battery health and safety management in realworld scenarios.展开更多
In this paper,we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field.By estimating the probability value of a time-stationary rando...In this paper,we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field.By estimating the probability value of a time-stationary random field in a small range,we give an entropy estimation and obtain the average entropy estimation formula in a certain bounded space region.It can be proven that the estimation of the average differential entropy converges to the theoretical value with a probability of 1.In addition,we also conducted numerical experiments for different parameters to verify the convergence result obtained in the theoretical proofs.展开更多
The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform met...The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform method(IHHT)is proposed to address the limitations of tradi-tional time-domain vibration analyses,such as low accuracy and mode mixing.This paper first clas-sifies the buckling degree of the friction components.Next,wavelet packet transform(WPT)isapplied to the vibration signals of different buckling plates to partition them into distinct fre-quency bands.Then,the instantaneous features are extracted by empirical mode decomposition(EMD)and Hilbert transform(HT)to discarding extraneous intrinsic mode function(IMF)com-ponents.Comparative analyses of Hilbert spectral entropy and time-domain features confirm theenhanced precision of IHHT under specific classifiers,which is better than traditional methods.展开更多
文摘Objective To evaluate the value of texture features derived from intravoxel incoherent motion(IVIM) parameters for differentiating pancreatic neuroendocrine tumor(pNET) from pancreatic adenocarcinoma(PAC).Methods Eighteen patients with pNET and 32 patients with PAC were retrospectively enrolled in this study. All patients underwent diffusion-weighted imaging with 10 b values used(from 0 to 800 s/mm2). Based on IVIM model, perfusion-related parameters including perfusion fraction(f), fast component of diffusion(Dfast) and true diffusion parameter slow component of diffusion(Dslow) were calculated on a voxel-by-voxel basis and reorganized into gray-encoded parametric maps. The mean value of each IVIM parameter and texture features [Angular Second Moment(ASM), Inverse Difference Moment(IDM), Correlation, Contrast and Entropy] values of IVIM parameters were measured. Independent sample t-test or Mann-Whitney U test were performed for the betweengroup comparison of quantitative data. Regression model was established by using binary logistic regression analysis, and receiver operating characteristic(ROC) curve was plotted to evaluate the diagnostic efficiency.Results The mean f value of the pNET group were significantly higher than that of the PAC group(27.0% vs. 19.0%, P = 0.001), while the mean values of Dfast and Dslow showed no significant differences between the two groups. All texture features(ASM, IDM, Correlation, Contrast and Entropy) of each IVIM parameter showed significant differences between the pNET and PAC groups(P = 0.000-0.043). Binary logistic regression analysis showed that texture ASM of Dfast and texture Correlation of Dslow were considered as the specific imaging variables for the differential diagnosis of pNET and PAC. ROC analysis revealed that multiple texture features presented better diagnostic performance than IVIM parameters(AUC 0.849-0.899 vs. 0.526-0.776), and texture ASM of Dfast combined with Correlation of Dslow in the model of logistic regression had largest area under ROC curve for distinguishing pNET from PAC(AUC 0.934, cutoff 0.378, sensitivity 0.889, specificity 0.854). Conclusion Texture analysis of IVIM parameters could be an effective and noninvasive tool to differentiate pNET from PAC.
文摘Objective To investigate the difference in texture features on diffusion weighted imaging(DWI) images between breast benign and malignant tumors.Methods Patients including 56 with mass-like breast cancer, 16 with breast fibroadenoma, and 4 with intraductal papilloma of breast treated in the Hainan Hospital of Chinese PLA General Hospital were retrospectively enrolled in this study, and allocated to the benign group(20 patients) and the malignant group(56 patients) according to the post-surgically pathological results. Texture analysis was performed on axial DWI images, and five characteristic parameters including Angular Second Moment(ASM), Contrast, Correlation, Inverse Difference Moment(IDM), and Entropy were calculated. Independent sample t-test and Mann-Whitney U test were performed for intergroup comparison. Regression model was established by using Binary Logistic regression analysis, and receiver operating characteristic curve(ROC) analysis was carried out to evaluate the diagnostic efficiency. Results The texture features ASM, Contrast, Correlation and Entropy showed significant differences between the benign and malignant breast tumor groups(PASM= 0.014, Pcontrast= 0.019, Pcorrelation= 0.010, Pentropy= 0.007). The area under the ROC curve was 0.685, 0.681, 0.754, and 0.683 respectively for the positive texture variables mentioned above, and that for the combined variables(ASM, Contrast, and Entropy) was 0.802 in the model of Logistic regression. Binary Logistic regression analysis demonstrated that ASM, Contrast and Entropy were considered as thespecific imaging variables for the differential diagnosis of breast benign and malignant tumors.Conclusion The texture analysis of DWI may be a simple and effective tool in the differential diagnosis between breast benign and malignant tumors.
文摘Latent tuberculosis infection(LTBI)has become a major source of active tuberculosis(ATB).Although the tuberculin skin test and interferon-gamma release assay can be used to diagnose LTBI,these methods can only differentiate infected individuals from healthy ones but cannot discriminate between LTBI and ATB.Thus,the diagnosis of LTBI faces many challenges,such as the lack of effective biomarkers from Mycobacterium tuberculosis(MTB)for distinguishing LTBI,the low diagnostic efficacy of biomarkers derived from the human host,and the absence of a gold standard to differentiate between LTBI and ATB.Sputum culture,as the gold standard for diagnosing tuberculosis,is time-consuming and cannot distinguish between ATB and LTBI.In this article,we review the pathogenesis of MTB and the immune mechanisms of the host in LTBI,including the innate and adaptive immune responses,multiple immune evasion mechanisms of MTB,and epigenetic regulation.Based on this knowledge,we summarize the current status and challenges in diagnosing LTBI and present the application of machine learning(ML)in LTBI diagnosis,as well as the advantages and limitations of ML in this context.Finally,we discuss the future development directions of ML applied to LTBI diagnosis.
文摘Atrial fibrillation(AF)is the most common sustained cardiac arrhythmia,significantly impacting patients’quality of life and increasing the risk of death,stroke,heart failure,and dementia.Over the past two decades,there have been significant breakthroughs in AF risk prediction and screening,stroke prevention,rhythm control,catheter ablation,and integrated management.During this period,the scale,quality,and experience of AF management in China have greatly improved,providing a solid foundation for the development of guidelines for the diagnosis and management of AF.To further promote standardized AF management,and apply new technologies and concepts to clinical practice in a timely and comprehensive manner,the Chinese Society of Cardiology of the Chinese Medical Association and the Heart Rhythm Committee of the Chinese Society of Biomedical Engineering have jointly developed the Chinese Guidelines for the Diagnosis and Management of Atrial Fibrillation.The guidelines have comprehensively elaborated on various aspects of AF management and proposed the CHA2DS2-VASc-60 stroke risk score based on the characteristics of AF in the Asian population.The guidelines have also reevaluated the clinical application of AF screening,emphasized the significance of early rhythm control,and highlighted the central role of catheter ablation in rhythm control.
文摘Myocarditis is a disease process that every emergency physician fears missing.Its severity can be mild to life-threatening,and many cases are likely undetected because they are subclinical with nonspecifi c signs.[1]Subtle cardiac signs may be overshadowed by systemic symptoms of the underlying infectious process.Fever,myalgias,lethargy,symptoms commonly associated with viral syndrome,can mask the life-threatening myocarditis that may be present.In fact,in the United States Myocarditis Treatment Trial,almost 90%of patients reported symptoms consistent with a viral prodrome.[2]Ammirati et al[3]reported that 27%of patients with myocarditis had either reduced left ventricular ejection fraction,ventricular arrhythmias,or low cardiac output.Here,we present a case report,in which handheld point-of-care ultrasound was utilized at the bedside to aid in the critical diagnosis of myocarditis.With the additional information provided through this imaging modality,this patient was able to be transferred to the appropriate tertiary care facility in an expeditious manner and receive possible defi nitive treatment.
基金supported by the National Natural Science Foundation of China(no.82374069)the Beijing Municipal Administration of Hospitals’Youth Program(no.QML20170105)the Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support“Yangfan”Project(no.ZYLX201802)。
文摘Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection.[1,2]Septic shock,the most severe form of sepsis,is characterized by circulatory and cellular/metabolic abnormalities,and can increase mortality to>40%.[1-3]Early recognition and risk stratification of septic shock are crucial but challenging because of the heterogeneity of its presentation and progression.
文摘Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indispensable for guaranteeing the secure and optimal functionality of the batteries.The impedance spectrum has garnered growing interest due to its ability to provide a valuable understanding of material characteristics and electrochemical processes.To inspire further progress in the investigation and application of the battery impedance spectrum,this paper provides a comprehensive review of the determination and utilization of the impedance spectrum.The sources of impedance inaccuracies are systematically analyzed in terms of frequency response characteristics.The applicability of utilizing diverse impedance features for the diagnosis and prognosis of batteries is further elaborated.Finally,challenges and prospects for future research are discussed.
文摘An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety.
基金supported by the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20210347)。
文摘The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise).
基金supported by the National Natural Science Foundation of China(22278241)the National Key R&D Program of China(2018YFA0901700)+1 种基金a grant from the Institute Guo Qiang,Tsinghua University(2021GQG1016)Department of Chemical Engineering-iBHE Joint Cooperation Fund.
文摘Early non-invasive diagnosis of coronary heart disease(CHD)is critical.However,it is challenging to achieve accurate CHD diagnosis via detecting breath.In this work,heterostructured complexes of black phosphorus(BP)and two-dimensional carbide and nitride(MXene)with high gas sensitivity and photo responsiveness were formulated using a self-assembly strategy.A light-activated virtual sensor array(LAVSA)based on BP/Ti_(3)C_(2)Tx was prepared under photomodulation and further assembled into an instant gas sensing platform(IGSP).In addition,a machine learning(ML)algorithm was introduced to help the IGSP detect and recognize the signals of breath samples to diagnose CHD.Due to the synergistic effect of BP and Ti_(3)C_(2)Tx as well as photo excitation,the synthesized heterostructured complexes exhibited higher performance than pristine Ti_(3)C_(2)Tx,with a response value 26%higher than that of pristine Ti_(3)C_(2)Tx.In addition,with the help of a pattern recognition algorithm,LAVSA successfully detected and identified 15 odor molecules affiliated with alcohols,ketones,aldehydes,esters,and acids.Meanwhile,with the assistance of ML,the IGSP achieved 69.2%accuracy in detecting the breath odor of 45 volunteers from healthy people and CHD patients.In conclusion,an immediate,low-cost,and accurate prototype was designed and fabricated for the noninvasive diagnosis of CHD,which provided a generalized solution for diagnosing other diseases and other more complex application scenarios.
基金supported by the Funding for Wu Jieping Medical Foundation’s special funding fund for clinical research(No.320.6750.2022-11-26)Scientific Research Project of Heilongjiang Provincial Health Commission(No.20220404021089)Open Project Program of Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China(Harbin Medical University)Ministry of Education(No.LPHGRD2022-002)。
文摘Background Acute Stanford Type A Aortic Dissection(ATAAD)is a critical medical emergency characterized by significant morbidity and mortality.This study aims to identify specific gene expression patterns and RNA modification associated with ATAAD.Methods The GSE153434 dataset was obtained from the Gene Expression Omnibus(GEO)database.Differential expression analysis was conducted to identify differential expression genes(DEGs)associated with ATAAD.To validate the involvement of RNA modification in ATAAD,RNA modification-related genes(M6A,M1A,M5C,APA,A-to-I)were acquired from GeneCards,following by Least Absolute Shrinkage and Selection Operator(LASSO)regression analysis.A gene prediction signature consisting of key genes was established,and Real-time PCR was used to validate the gene expression in clinical samples.The patients were then divided into high and low-risk groups,and subsequent enrichment analysis,including Gene Ontology(GO),Kyoto Encyclopedia of Genes and Genomes(KEGG),Gene Set Enrichment Analysis(GSEA),Gene Set Variation Analysis(GSVA),and assessments of immune infiltration.A co-expression network analysis(WGCNA)was performed to explore gene-phenotype relationships and identify key genes.Results A total of 45 RNA modification genes were acquired.Six gene signatures(YTHDC1,WTAP,CFI,ADARB1,ADARB2,TET3)were developed for ATAAD diagnosis and risk stratification.Enrichment analysis suggested the potential involvement of inflammation and extracellular matrix pathways in the progression of ATAAD.The incorporation of pertinent genes from the GSE147026 dataset into the six-gene signature further validated the model's effectiveness.A significant upregulation in WTAP,ADARB2,and TET3 expression,whereas YTHDC1 exhibited a noteworthy downregulation in the ATAAD group.Conclusion Six-gene signature could serve as an efficient model for predicting the diagnosis of ATAAD.
文摘Correction to:Nuclear Science and Techniques(2024)35:61 https://doi.org/10.1007/s41365-024-01421-5 In this article,the figures were wrongly numbered.The Fig.7 and 8 should have been Fig.11 and 12.The Fig.9,10,11,and 12 should have been 7,8,9 and 10.The original article has been corrected.
文摘Cardiovascular computed tomography angiography(CTA)is a widely used imaging modality in the diagnosis of cardiovascular disease.Advancements in CT imaging technology have further advanced its applications from high diagnostic value to minimising radiation exposure to patients.In addition to the standard application of assessing vascular lumen changes,CTA-derived applications including 3D printed personalised models,3D visualisations such as virtual endoscopy,virtual reality,augmented reality and mixed reality,as well as CT-derived hemodynamic flow analysis and fractional flow reserve(FFRCT)greatly enhance the diagnostic performance of CTA in cardiovascular disease.The widespread application of artificial intelligence in medicine also significantly contributes to the clinical value of CTA in cardiovascular disease.Clinical value of CTA has extended from the initial diagnosis to identification of vulnerable lesions,and prediction of disease extent,hence improving patient care and management.In this review article,as an active researcher in cardiovascular imaging for more than 20 years,I will provide an overview of cardiovascular CTA in cardiovascular disease.It is expected that this review will provide readers with an update of CTA applications,from the initial lumen assessment to recent developments utilising latest novel imaging and visualisation technologies.It will serve as a useful resource for researchers and clinicians to judiciously use the cardiovascular CT in clinical practice.
基金funded by a University College Dublin Career Development Award(ref.SF1881).
文摘To the editor:Psychiatric theory,policy and practice are currently grappling with the risks and opportunities presented by artificial intelligence(AI)applications in mental healthcare.Synthesising data to generate diagnosis is an aspect of mental healthcare where AI is anticipated to have the greatest and soonest impact.1-4 While such technologies remain some distance from clinical application,preliminary evidence suggests AI-derived classifications may predict certain treatment outcomes and clinical trajectories,and could soon become available to supplement or replace traditional manual-based diagnostic assessment.
基金supported by the National Natural Science Foundation of China(82072432)the China-Japan Friendship Hospital Horizontal Project/Spontaneous Research Funding(2022-HX-JC-7)+1 种基金the National High Level Hospital Clinical Research Funding(2022-NHLHCRF-PY-20)the Elite Medical Professionals project of China-Japan Friendship Hospital(ZRJY2021-GG12).
文摘Rheumatoid arthritis(RA)is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability,thus adversely affecting locomotion ability and life quality.Consequently,good prognosis heavily relies on the early diagnosis and effective therapeutic monitoring of RA.Activatable fluorescent probes play vital roles in the detection and imaging of biomarkers for disease diagnosis and in vivo imaging.Herein,we review the fluorescent probes developed for the detection and imaging of RA biomarkers,namely reactive oxygen/nitrogen species(hypochlorous acid,peroxynitrite,hydroxyl radical,nitroxyl),pH,and cysteine,and address the related challenges and prospects to inspire the design of novel fluorescent probes and the improvement of their performance in RA studies.
基金supported by the National Natural Science Foundation of China(Grant No.62373197)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX18_0892).
文摘The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory infections,such as influenza-like illness(ILI).Accurate prediction models for ILI cases are crucial in enabling governments to implement necessary measures and persuade individuals to adopt personal precautions against the disease.This paper aims to provide a forecasting model for ILI cases with actual cases.We propose a specific model utilizing the partial differential equation(PDE)that will be developed and validated using real-world data obtained from the Chinese National Influenza Center.Our model combines the effects of transboundary spread among regions in China mainland and human activities’impact on ILI transmission dynamics.The simulated results demonstrate that our model achieves excellent predictive performance.Additionally,relevant factors influencing the dissemination are further examined in our analysis.Furthermore,we investigate the effectiveness of travel restrictions on ILI cases.Results can be used to utilize to mitigate the spread of disease.
基金the Project Support of NSFC(No.U19B6003-05 and No.52074314)。
文摘A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method.
基金supported by the research project‘‘SafeDaBatt”(03EMF0409A)funded by the German Federal Ministry for Digital and Transport(BMDV)+2 种基金the National Key Research and Development Program of China(2022YFE0102700)the Key Research and Development Program of Shaanxi Province(2023-GHYB-05,2023-YBSF-104)the financial support from the China Scholarship Council(CSC)(202206567008)。
文摘Accurate aging diagnosis is crucial for the health and safety management of lithium-ion batteries in electric vehicles.Despite significant advancements achieved by data-driven methods,diagnosis accuracy remains constrained by the high costs of check-up tests and the scarcity of labeled data.This paper presents a framework utilizing self-supervised machine learning to harness the potential of unlabeled data for diagnosing battery aging in electric vehicles during field operations.We validate our method using battery degradation datasets collected over more than two years from twenty real-world electric vehicles.Our analysis comprehensively addresses cell inconsistencies,physical interpretations,and charging uncertainties in real-world applications.This is achieved through self-supervised feature extraction using random short charging sequences in the main peak of incremental capacity curves.By leveraging inexpensive unlabeled data in a self-supervised approach,our method demonstrates improvements in average root mean square errors of 74.54%and 60.50%in the best and worst cases,respectively,compared to the supervised benchmark.This work underscores the potential of employing low-cost unlabeled data with self-supervised machine learning for effective battery health and safety management in realworld scenarios.
基金supported by the Shenzhen sustainable development project:KCXFZ 20201221173013036 and the National Natural Science Foundation of China(91746107).
文摘In this paper,we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field.By estimating the probability value of a time-stationary random field in a small range,we give an entropy estimation and obtain the average entropy estimation formula in a certain bounded space region.It can be proven that the estimation of the average differential entropy converges to the theoretical value with a probability of 1.In addition,we also conducted numerical experiments for different parameters to verify the convergence result obtained in the theoretical proofs.
文摘The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform method(IHHT)is proposed to address the limitations of tradi-tional time-domain vibration analyses,such as low accuracy and mode mixing.This paper first clas-sifies the buckling degree of the friction components.Next,wavelet packet transform(WPT)isapplied to the vibration signals of different buckling plates to partition them into distinct fre-quency bands.Then,the instantaneous features are extracted by empirical mode decomposition(EMD)and Hilbert transform(HT)to discarding extraneous intrinsic mode function(IMF)com-ponents.Comparative analyses of Hilbert spectral entropy and time-domain features confirm theenhanced precision of IHHT under specific classifiers,which is better than traditional methods.