The PICOSEC Micromegas(MM)is a precise timing gaseous detector based on a Cherenkov radiator coupled with a semi-transparent photocathode and an MM amplifying structure.It features a two-stage amplification process th...The PICOSEC Micromegas(MM)is a precise timing gaseous detector based on a Cherenkov radiator coupled with a semi-transparent photocathode and an MM amplifying structure.It features a two-stage amplification process that leads to a significant deterioration of non-uniformity when scaling up to larger areas.Since the performance of gaseous detectors is highly dependent on the choice of working gas,optimizing the gas mixture offers a promising solution to improve the uniformity performance.This paper addresses these challenges through a combined approach of simulation based on Garfield++and experimental studies.The simulation investigates the properties of different mixing fractions of gas mixtures and their impact on detector performance,including gain uniformity and time resolution.To verify the simulation results,experimental tests were conducted using a multi-channel PICOSEC MM prototype with different gas mixtures.The experimental results are consistent with the findings of the simulation,indicating that a higher concentration of neon significantly improves the detector’s gain uniformity.Furthermore,the influence of gas mixtures on time resolution was explored as a critical performance indicator.The study presented in this paper offers valuable insights for improving uniformity in large-area PICOSEC MM detectors and optimizing overall performance.展开更多
The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled h...The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled hyperonantihyperon pairs to be produced at Super Tau-Charm Facility(STCF),the CP asymmetry of hyperon is expected to be tested with a statistical sensitivity of 10^(−4) or even better.To cope with the statistical precision,the systematic effects from various aspects are critical and need to be studied in detail.In this paper,the sensitivity effects on the CP violation parameters associated with the detector resolution,including those of the position and momentum,are studied and discussed in detail.The results provide valuable guidance for the design of STCF detector.展开更多
To detect space gravitational waves in the extremely low-frequency band,the telescope and optic-al platform require high stability and reliability.However,the cantilevered design presents challenges,espe-cially in the...To detect space gravitational waves in the extremely low-frequency band,the telescope and optic-al platform require high stability and reliability.However,the cantilevered design presents challenges,espe-cially in the glass-metal hetero-bonding process.This study focuses on the analysis and experimental re-search of the bonding layer in the integrated structure.By optimizing the structural configuration and select-ing suitable bonding processes,the reliability of the telescope system is enhanced.The research indicates that using J-133 adhesive achieves the best performance,with a bonding layer thickness of 0.30 mm and a metal substrate surface roughness of Ra 0.8.These findings significantly enhance the reliability of the optical sys-tem while minimizing potential risks.展开更多
For segmented detectors,surface flatness is critical as it directly influences both energy resolution and image clarity.Additionally,the limited adjustment range of the segmented detectors necessitates precise benchma...For segmented detectors,surface flatness is critical as it directly influences both energy resolution and image clarity.Additionally,the limited adjustment range of the segmented detectors necessitates precise benchmark construction.This paper proposes an architecture for detecting detector flatness based on channel spectral dispersion.By measuring the dispersion fringes for coplanar adjustment,the final adjustment residual is improved to better than 300 nm.This result validates the feasibility of the proposed technology and provides significant technical support for the development of next-generation large-aperture sky survey equipment.展开更多
The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.How...The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.However,conventional polarization detection systems are often bulky and complex,limiting their poten⁃tial for broader applications.To address the challenges of miniaturization,integrated polarization detectors have been extensively explored in recent years,achieving significant advancements in performance and functionality.In this review,we focus mainly on integrated polarization detectors with innovative features,including infinitely high polarization discrimination,ultrahigh sensitivity to polarization state change,full Stokes parameters measure⁃ment,and simultaneous perception of polarization and other key properties of light.Lastly,we discuss the oppor⁃tunities and challenges for the future development of integrated polarization photodetectors.展开更多
In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are of...In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are often constrained by the reliance on off-chip light sources and detectors.In this study,we demonstrate an InAs/GaAsSb superlattice mid-infrared waveguide integrated detector.The GaAsSb waveguide layer and the InAs/GaAsSb superlattice absorbing layer are connected through evanescent coupling,facilitating efficient and highquality detection of mid-infrared light with minimal loss.We conducted a simulation to analyze the photoelectric characteristics of the device.Additionally,we investigated the factors that affect the integration of the InAs/GaAs⁃Sb superlattice photodetector and the GaAsSb waveguide.Optimal thicknesses and lengths for the absorption lay⁃er are determined.When the absorption layer has a thickness of 0.3μm and a length of 50μm,the noise equiva⁃lent power reaches its minimum value,and the quantum efficiency can achieve a value of 68.9%.The utilization of waveguide detectors constructed with Ⅲ-Ⅴ materials offers a more convenient means of integrating mid-infra⁃red light sources and achieving photoelectric detection chips.展开更多
煤矿井下视觉同步定位与地图构建SLAM(Simultaneous Localization and Mapping)应用中,光照变化与低纹理场景严重影响特征点的提取和匹配结果,导致位姿估计失败,影响定位精度。提出一种基于改进定向快速旋转二值描述符ORB(Oriented Fast...煤矿井下视觉同步定位与地图构建SLAM(Simultaneous Localization and Mapping)应用中,光照变化与低纹理场景严重影响特征点的提取和匹配结果,导致位姿估计失败,影响定位精度。提出一种基于改进定向快速旋转二值描述符ORB(Oriented Fast and Rotated Brief)-SLAM3算法的煤矿井下移动机器人双目视觉定位算法SL-SLAM。针对光照变化场景,在前端使用光照稳定性的Super-Point特征点提取网络替换原始ORB特征点提取算法,并提出一种特征点网格限定法,有效剔除无效特征点区域,增加位姿估计稳定性。针对低纹理场景,在前端引入稳定的线段检测器LSD(Line Segment Detector)线特征提取算法,并提出一种点线联合算法,按照特征点网格对线特征进行分组,根据特征点的匹配结果进行线特征匹配,降低线特征匹配复杂度,节约位姿估计时间。构建了点特征和线特征的重投影误差模型,在线特征残差模型中添加角度约束,通过点特征和线特征的位姿增量雅可比矩阵建立点线特征重投影误差统一成本函数。局部建图线程使用ORB-SLAM3经典的局部优化方法调整点、线特征和关键帧位姿,并在后端线程中进行回环修正、子图融合和全局捆绑调整BA(Bundle Adjustment)。在EuRoC数据集上的试验结果表明,SL-SLAM的绝对位姿误差APE(Absolute Pose Error)指标优于其他对比算法,并取得了与真值最接近的轨迹预测结果:均方根误差相较于ORB-SLAM3降低了17.3%。在煤矿井下模拟场景中的试验结果表明,SL-SLAM能适应光照变化和低纹理场景,可以满足煤矿井下移动机器人的定位精度和稳定性要求。展开更多
基金supported by the National Natural Science Foundation of China(12125505).
文摘The PICOSEC Micromegas(MM)is a precise timing gaseous detector based on a Cherenkov radiator coupled with a semi-transparent photocathode and an MM amplifying structure.It features a two-stage amplification process that leads to a significant deterioration of non-uniformity when scaling up to larger areas.Since the performance of gaseous detectors is highly dependent on the choice of working gas,optimizing the gas mixture offers a promising solution to improve the uniformity performance.This paper addresses these challenges through a combined approach of simulation based on Garfield++and experimental studies.The simulation investigates the properties of different mixing fractions of gas mixtures and their impact on detector performance,including gain uniformity and time resolution.To verify the simulation results,experimental tests were conducted using a multi-channel PICOSEC MM prototype with different gas mixtures.The experimental results are consistent with the findings of the simulation,indicating that a higher concentration of neon significantly improves the detector’s gain uniformity.Furthermore,the influence of gas mixtures on time resolution was explored as a critical performance indicator.The study presented in this paper offers valuable insights for improving uniformity in large-area PICOSEC MM detectors and optimizing overall performance.
基金supported by the National Key R&D Program of China(2022YFA1602200)the International Partnership Program of the Chinese Academy of Sciences(211134KYSB20200057).
文摘The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled hyperonantihyperon pairs to be produced at Super Tau-Charm Facility(STCF),the CP asymmetry of hyperon is expected to be tested with a statistical sensitivity of 10^(−4) or even better.To cope with the statistical precision,the systematic effects from various aspects are critical and need to be studied in detail.In this paper,the sensitivity effects on the CP violation parameters associated with the detector resolution,including those of the position and momentum,are studied and discussed in detail.The results provide valuable guidance for the design of STCF detector.
文摘To detect space gravitational waves in the extremely low-frequency band,the telescope and optic-al platform require high stability and reliability.However,the cantilevered design presents challenges,espe-cially in the glass-metal hetero-bonding process.This study focuses on the analysis and experimental re-search of the bonding layer in the integrated structure.By optimizing the structural configuration and select-ing suitable bonding processes,the reliability of the telescope system is enhanced.The research indicates that using J-133 adhesive achieves the best performance,with a bonding layer thickness of 0.30 mm and a metal substrate surface roughness of Ra 0.8.These findings significantly enhance the reliability of the optical sys-tem while minimizing potential risks.
文摘For segmented detectors,surface flatness is critical as it directly influences both energy resolution and image clarity.Additionally,the limited adjustment range of the segmented detectors necessitates precise benchmark construction.This paper proposes an architecture for detecting detector flatness based on channel spectral dispersion.By measuring the dispersion fringes for coplanar adjustment,the final adjustment residual is improved to better than 300 nm.This result validates the feasibility of the proposed technology and provides significant technical support for the development of next-generation large-aperture sky survey equipment.
基金Supported by the National Key Research and Development Program of China(2022YFA1404602)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0580000)+3 种基金the National Natural Science Foundation of China(U23B2045,62305362)the Program of Shanghai Academic/Technology Research Leader(22XD1424400)the Fund of SITP Innovation Foundation(CX-461 and CX-522)Special Project to Seize the Commanding Heights of Science and Technology of Chinese Academy of Sciences,subtopic(GJ0090406-6).
文摘The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.However,conventional polarization detection systems are often bulky and complex,limiting their poten⁃tial for broader applications.To address the challenges of miniaturization,integrated polarization detectors have been extensively explored in recent years,achieving significant advancements in performance and functionality.In this review,we focus mainly on integrated polarization detectors with innovative features,including infinitely high polarization discrimination,ultrahigh sensitivity to polarization state change,full Stokes parameters measure⁃ment,and simultaneous perception of polarization and other key properties of light.Lastly,we discuss the oppor⁃tunities and challenges for the future development of integrated polarization photodetectors.
基金Supported by the National Natural Science Foundation of China(NSFC)(61904183,61974152,62104237,62004205)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y202057)+1 种基金Shanghai Science and Technology Committee Rising-Star Program(20QA1410500)Shanghai Sail Plans(21YF1455000)。
文摘In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are often constrained by the reliance on off-chip light sources and detectors.In this study,we demonstrate an InAs/GaAsSb superlattice mid-infrared waveguide integrated detector.The GaAsSb waveguide layer and the InAs/GaAsSb superlattice absorbing layer are connected through evanescent coupling,facilitating efficient and highquality detection of mid-infrared light with minimal loss.We conducted a simulation to analyze the photoelectric characteristics of the device.Additionally,we investigated the factors that affect the integration of the InAs/GaAs⁃Sb superlattice photodetector and the GaAsSb waveguide.Optimal thicknesses and lengths for the absorption lay⁃er are determined.When the absorption layer has a thickness of 0.3μm and a length of 50μm,the noise equiva⁃lent power reaches its minimum value,and the quantum efficiency can achieve a value of 68.9%.The utilization of waveguide detectors constructed with Ⅲ-Ⅴ materials offers a more convenient means of integrating mid-infra⁃red light sources and achieving photoelectric detection chips.
文摘煤矿井下视觉同步定位与地图构建SLAM(Simultaneous Localization and Mapping)应用中,光照变化与低纹理场景严重影响特征点的提取和匹配结果,导致位姿估计失败,影响定位精度。提出一种基于改进定向快速旋转二值描述符ORB(Oriented Fast and Rotated Brief)-SLAM3算法的煤矿井下移动机器人双目视觉定位算法SL-SLAM。针对光照变化场景,在前端使用光照稳定性的Super-Point特征点提取网络替换原始ORB特征点提取算法,并提出一种特征点网格限定法,有效剔除无效特征点区域,增加位姿估计稳定性。针对低纹理场景,在前端引入稳定的线段检测器LSD(Line Segment Detector)线特征提取算法,并提出一种点线联合算法,按照特征点网格对线特征进行分组,根据特征点的匹配结果进行线特征匹配,降低线特征匹配复杂度,节约位姿估计时间。构建了点特征和线特征的重投影误差模型,在线特征残差模型中添加角度约束,通过点特征和线特征的位姿增量雅可比矩阵建立点线特征重投影误差统一成本函数。局部建图线程使用ORB-SLAM3经典的局部优化方法调整点、线特征和关键帧位姿,并在后端线程中进行回环修正、子图融合和全局捆绑调整BA(Bundle Adjustment)。在EuRoC数据集上的试验结果表明,SL-SLAM的绝对位姿误差APE(Absolute Pose Error)指标优于其他对比算法,并取得了与真值最接近的轨迹预测结果:均方根误差相较于ORB-SLAM3降低了17.3%。在煤矿井下模拟场景中的试验结果表明,SL-SLAM能适应光照变化和低纹理场景,可以满足煤矿井下移动机器人的定位精度和稳定性要求。