The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrai...The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrained models,posing challenges for non-cooperative applications.This paper introduces a novel approach to model MFRs using a Bayesian network,where the conditional probability density function is approximated by an autoregressive kernel mixture network(ARKMN).Utilizing the estimated probability density function,a dynamic programming algorithm is proposed for denoising and detecting change points in the intercepted MFRs pulse trains.Simulation results affirm the proposed method's efficacy in modeling MFRs,outperforming the state-of-the-art in pulse train denoising and change point detection.展开更多
With the rapid development of communication and computer,the individual identification technology of communication equipment has been brought to many application scenarios.The identification of the same type of electr...With the rapid development of communication and computer,the individual identification technology of communication equipment has been brought to many application scenarios.The identification of the same type of electronic equipment is of considerable significance,whether it is the identification of friend or foe in military applications,identity determination,radio spectrum management in civil applications,equipment fault diagnosis,and so on.Because of the limited-expression ability of the traditional electromagnetic signal representation methods in the face of complex signals,a new method of individual identification of the same equipment of communication equipment based on deep learning is proposed.The contents of this paper include the following aspects:(1)Considering the shortcomings of deep learning in processing small sample data,this paper provides a universal and robust feature template for signal data.This paper constructs a relatively complete signal template library from multiple perspectives,such as time domain and transform domain features,combined with high-order statistical analysis.Based on the inspiration of the image texture feature,characteristics of amplitude histogram of signal and the signal amplitude co-occurrence matrix(SACM)are proposed in this paper.These signal features can be used as a signal fingerprint template for individual identification.(2)Considering the limitation of the recognition rate of a single classifier,using the integrated classifier has achieved better generalization ability.The final average accuracy of 5 NRF24LE1 modules is up to 98%and solved the problem of individual identification of the same equipment of communication equipment under the condition of the small sample,low signal-to-noise ratio.展开更多
基金supported by the National Natural Science Foundation of China under Grant 62301119。
文摘The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrained models,posing challenges for non-cooperative applications.This paper introduces a novel approach to model MFRs using a Bayesian network,where the conditional probability density function is approximated by an autoregressive kernel mixture network(ARKMN).Utilizing the estimated probability density function,a dynamic programming algorithm is proposed for denoising and detecting change points in the intercepted MFRs pulse trains.Simulation results affirm the proposed method's efficacy in modeling MFRs,outperforming the state-of-the-art in pulse train denoising and change point detection.
基金This work was supported by the National natural science foundation of China(No:62071057)Beijing nature fund(No:3182028).The support is gratefully acknowledged.
文摘With the rapid development of communication and computer,the individual identification technology of communication equipment has been brought to many application scenarios.The identification of the same type of electronic equipment is of considerable significance,whether it is the identification of friend or foe in military applications,identity determination,radio spectrum management in civil applications,equipment fault diagnosis,and so on.Because of the limited-expression ability of the traditional electromagnetic signal representation methods in the face of complex signals,a new method of individual identification of the same equipment of communication equipment based on deep learning is proposed.The contents of this paper include the following aspects:(1)Considering the shortcomings of deep learning in processing small sample data,this paper provides a universal and robust feature template for signal data.This paper constructs a relatively complete signal template library from multiple perspectives,such as time domain and transform domain features,combined with high-order statistical analysis.Based on the inspiration of the image texture feature,characteristics of amplitude histogram of signal and the signal amplitude co-occurrence matrix(SACM)are proposed in this paper.These signal features can be used as a signal fingerprint template for individual identification.(2)Considering the limitation of the recognition rate of a single classifier,using the integrated classifier has achieved better generalization ability.The final average accuracy of 5 NRF24LE1 modules is up to 98%and solved the problem of individual identification of the same equipment of communication equipment under the condition of the small sample,low signal-to-noise ratio.