期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Probabilistic modeling of multifunction radars with autoregressive kernel mixture network
1
作者 Hancong Feng Kaili.Jiang +4 位作者 Zhixing Zhou Yuxin Zhao Kailun Tian Haixin Yan Bin Tang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期275-288,共14页
The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrai... The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrained models,posing challenges for non-cooperative applications.This paper introduces a novel approach to model MFRs using a Bayesian network,where the conditional probability density function is approximated by an autoregressive kernel mixture network(ARKMN).Utilizing the estimated probability density function,a dynamic programming algorithm is proposed for denoising and detecting change points in the intercepted MFRs pulse trains.Simulation results affirm the proposed method's efficacy in modeling MFRs,outperforming the state-of-the-art in pulse train denoising and change point detection. 展开更多
关键词 Probabilistic forecasting Multifunction radar Unsupervised learning Change point detection Outlier detection
在线阅读 下载PDF
Individual Identification of Electronic Equipment Based on Electromagnetic Fingerprint Characteristics
2
作者 Han Xu Hongxin Zhang +3 位作者 Jun Xu Guangyuan Wang Yun Nie Hua Zhang 《China Communications》 SCIE CSCD 2021年第1期169-180,共12页
With the rapid development of communication and computer,the individual identification technology of communication equipment has been brought to many application scenarios.The identification of the same type of electr... With the rapid development of communication and computer,the individual identification technology of communication equipment has been brought to many application scenarios.The identification of the same type of electronic equipment is of considerable significance,whether it is the identification of friend or foe in military applications,identity determination,radio spectrum management in civil applications,equipment fault diagnosis,and so on.Because of the limited-expression ability of the traditional electromagnetic signal representation methods in the face of complex signals,a new method of individual identification of the same equipment of communication equipment based on deep learning is proposed.The contents of this paper include the following aspects:(1)Considering the shortcomings of deep learning in processing small sample data,this paper provides a universal and robust feature template for signal data.This paper constructs a relatively complete signal template library from multiple perspectives,such as time domain and transform domain features,combined with high-order statistical analysis.Based on the inspiration of the image texture feature,characteristics of amplitude histogram of signal and the signal amplitude co-occurrence matrix(SACM)are proposed in this paper.These signal features can be used as a signal fingerprint template for individual identification.(2)Considering the limitation of the recognition rate of a single classifier,using the integrated classifier has achieved better generalization ability.The final average accuracy of 5 NRF24LE1 modules is up to 98%and solved the problem of individual identification of the same equipment of communication equipment under the condition of the small sample,low signal-to-noise ratio. 展开更多
关键词 signal fingerprints histogram-based signal feature starting point detection signal level cooccurrence matrix ensemble Learningn
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部