Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planti...Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity.展开更多
The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ...The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.展开更多
High-density germanate glasses doped with Tb^(3+)ions were synthesized via the melt-quenching meth-od.The physical and luminescent properties of these glasses were characterized through various techniques,in-cluding d...High-density germanate glasses doped with Tb^(3+)ions were synthesized via the melt-quenching meth-od.The physical and luminescent properties of these glasses were characterized through various techniques,in-cluding density measurement,differential scanning calorimetry(DSC),photoluminescence(PL)spectroscopy,X-ray excited luminescence(XEL)spectroscopy,and fluorescence decay analysis.The densities of the germanate glasses were greater than 6.1 g/cm^(3).Upon excitations of ultraviolet(UV)light and X-rays,the glasses emitted in-tense green emissions.The fluorescence lifetime of the strongest emission peak at 544 nm,measured under 377 nm excitation,ranged from 1.52 ms to 1.32 ms.In the glass specimens,the maximum XEL integral intensity reached roughly 26%of that of the commercially available Bi_(4)Ge_(3)O_(12)(BGO)crystal.These results indicate that Tb^(3+)-doped high-density germanate scintillating glasses hold potential as scintillation materials for X-ray imaging applications.展开更多
We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic ligh...We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic lightemitting diode(OLED)materials.By utilizing electronic structure,frontier molecular orbitals,minimum single-line absorption,triplet excited states,and emission spectral data derived from the density functional theory,the usefulness of these Ir(Ⅲ)complexes,including(piq)_(2)Ir(acac),(piq)_(2)Ir(tmd),(piq)_(2)Ir(tpip),(fpiq)_(2)Ir(acac),(fpiq)_(2)Ir(tmd),and(fpiq)_(2)Ir(tpip),in OLEDs was examined,where piq=1-phenylisoquinoline,fpiq=1-(4-fluorophenyl)isoquinoline,acac=(3Z)-4-hydroxypent-3-en-2-one,tmd=(4Z)-5-hydroxy-2,2,6,6-tetramethylhept-4-en-3-one,and tpip=tetraphenylimido-diphosphonate.These complexes all have low-efficiency roll-off properties,especially(fpiq)_(2)Ir(tpip).Some researchers have successfully synthesized complexes extremely similar to(piq)_(2)Ir(acac)through the Suzuki-Miyaura coupling reaction.展开更多
The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this is...The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies.展开更多
Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involv...Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involving both molecular isomerization and crystal morphology control was employed to design and optimize trinitromethyl-oxadiazole with improved comprehensive performance.Utilizing this dual strategy,3,5-bis(trinitromethyl)-1,2,4-oxadiazole(3)was synthesized,resulting in the formation of two distinct crystal morphologies(needle and sheet)corresponding to two crystal forms(3-a and3-b).Encouragingly,while maintaining ultra-high oxygen balance(21.73%),3 achieves impressive densities(1.97-1.98 g/cm^(3)).To our knowledge,the density of 1.98 g/cm^(3)for 3-a sets a new record among that of nitrogen-rich monocyclic compounds.Notably,practical crystal morphology prediction was creatively introduced to guide the experimental crystallization conditions of 3,increasing the impact sensitivity and friction sensitivity from 1 J to 80 N(3-a)to 10 J and 240 N(3-b),respectively.Additionally,the crystal structural analyses and theoretical calculations were conducted to elucidate the reasons of differences between 3-a and 3-b in density and stability.This work provides an efficient strategy to enhance performance of trinitromethyl derivatives,broadening the path and expanding the toolbox for energetic materials.展开更多
The simultaneous integration of high energy density,low sensitivity,and thermal stability in energetic materials has constituted a century-long scientific challenge.Herein,we address this through a dualzwitterionic el...The simultaneous integration of high energy density,low sensitivity,and thermal stability in energetic materials has constituted a century-long scientific challenge.Herein,we address this through a dualzwitterionic electronic delocalization strategy,yielding TYX-3,the first bis-inner salt triazolo-tetrazine framework combining these mutually exclusive properties.Uniformπ-electron distribution and elevated bond dissociation energy confer exceptional thermal stability(T_(d)=365℃)with TATB-level insensitivity(impact sensitivity IS>40 J,friction sensitivity FS>360 N).Engineeredπ-stacked networks enable record density(1.99 g·cm^(-3))with detonation performance surpassing HMX benchmarks(detonation velocity 9315 m·s^(-1),detonation pressure 36.6 GPa).Practical implementation in Poly(3-nitratomethyl-3-methyloxetane)(PNMMFO)solid propellants demonstrates 5.4-fold safety enhancement over conventional HMX-based formulations while maintaining equivalent specific impulse.This work establishes a new design paradigm for energetic materials,overcoming the historical trade-offs between molecular stability and energy output through rational zwitterionic engineering.展开更多
The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formabilit...The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formability of Al-Cu-Li alloy is vital.A thorough comparison of the effects of cryo-deformation and ambient temperature large pre-deformation(LPD)on the creep ageing response in the 2195 alloy sheet at 160℃with different stresses has been made.The evolution of dislocations and precipitates during creep ageing of LPD alloys are revealed by X-ray diffraction and transmission electron microscopy.High-quality 2195 alloy sheet largely pre-deformed by 80%without edge-cracking is obtained by cryo-rolling at liquid nitrogen temperature,while severe edge-cracking occurs during room temperature rolling.The creep formability and strength of the 2195 alloy are both enhanced by introducing pre-existing dislocations with a density over 1.4×10^(15)m^(−2).At 160℃and 150 MPa,creep strain and creep-aged strength generally increases by 4−6 times and 30−50 MPa in the LPD sample,respectively,compared to conventional T3 alloy counterpart.The elongation of creep-aged LPD sample is low but remains relevant for application.The high-density dislocations,though existing in the form of dislocation tangles,promote the formation of refined T1 precipitates with a uniform dispersion.展开更多
This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is establi...This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is established considering the flexible deformation of the barrel and the interaction between the projectile and the barrel.Subsequently,the accuracy of the dynamic model is verified based on the external ballistic projectile attitude test platform.Furthermore,the probability density evolution method(PDEM)is developed to high-dimensional uncertainty quantification of projectile motion.The engineering example highlights the results of the proposed method are consistent with the results obtained by the Monte Carlo Simulation(MCS).Finally,the influence of parameter uncertainty on the projectile disturbance at muzzle under different working conditions is analyzed.The results show that the disturbance of the pitch angular,pitch angular velocity and pitch angular of velocity decreases with the increase of launching angle,and the random parameter ranges of both the projectile and coupling model have similar influence on the disturbance of projectile angular motion at muzzle.展开更多
Aiming at the triangular fuzzy(TF)multi-attribute decision making(MADM)problem with a preference for the distribution density of attribute(DDA),a decision making method with TF number two-dimensional density(TFTD)oper...Aiming at the triangular fuzzy(TF)multi-attribute decision making(MADM)problem with a preference for the distribution density of attribute(DDA),a decision making method with TF number two-dimensional density(TFTD)operator is proposed based on the density operator theory for the decision maker(DM).Firstly,a simple TF vector clustering method is proposed,which considers the feature of TF number and the geometric distance of vectors.Secondly,the least deviation sum of squares method is used in the program model to obtain the density weight vector.Then,two TFTD operators are defined,and the MADM method based on the TFTD operator is proposed.Finally,a numerical example is given to illustrate the superiority of this method,which can not only solve the TF MADM problem with a preference for the DDA but also help the DM make an overall comparison.展开更多
Objective To observe the value of artificial intelligence(AI)models based on non-contrast chest CT for measuring bone mineral density(BMD).Methods Totally 380 subjects who underwent both non-contrast chest CT and quan...Objective To observe the value of artificial intelligence(AI)models based on non-contrast chest CT for measuring bone mineral density(BMD).Methods Totally 380 subjects who underwent both non-contrast chest CT and quantitative CT(QCT)BMD examination were retrospectively enrolled and divided into training set(n=304)and test set(n=76)at a ratio of 8∶2.The mean BMD of L1—L3 vertebrae were measured based on QCT.Spongy bones of T5—T10 vertebrae were segmented as ROI,radiomics(Rad)features were extracted,and machine learning(ML),Rad and deep learning(DL)models were constructed for classification of osteoporosis(OP)and evaluating BMD,respectively.Receiver operating characteristic curves were drawn,and area under the curves(AUC)were calculated to evaluate the efficacy of each model for classification of OP.Bland-Altman analysis and Pearson correlation analysis were performed to explore the consistency and correlation of each model with QCT for measuring BMD.Results Among ML and Rad models,ML Bagging-OP and Rad Bagging-OP had the best performances for classification of OP.In test set,AUC of ML Bagging-OP,Rad Bagging-OP and DL OP for classification of OP was 0.943,0.944 and 0.947,respectively,with no significant difference(all P>0.05).BMD obtained with all the above models had good consistency with those measured with QCT(most of the differences were within the range of Ax-G±1.96 s),which were highly positively correlated(r=0.910—0.974,all P<0.001).Conclusion AI models based on non-contrast chest CT had high efficacy for classification of OP,and good consistency of BMD measurements were found between AI models and QCT.展开更多
Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considere...Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.展开更多
Polarons are widely considered to play a crucial role in the charge transport and photocatalytic performance of materials,but the mechanisms of their formation and the underlying driving factors remain a matter of con...Polarons are widely considered to play a crucial role in the charge transport and photocatalytic performance of materials,but the mechanisms of their formation and the underlying driving factors remain a matter of controversy.This study delves into the formation of polarons in different crystalline forms of TiO_(2) and their connection with the materials'structure.By employing density functional theory calculations with on-site Coulomb interaction correction(DFT+U),we provide a detailed analysis of the electronic polarization behavior in the anatase and rutile forms of TiO_(2).We focus on the polarization properties of defect-induced and photoexcited excess electrons on various TiO_(2) surfaces.The results reveal that the defect electrons can form small polarons on the anatase TiO_(2)(101)surface,while on the rutile TiO_(2)(110)surface,both small and large polarons(hybrid-state polarons)are formed.Photoexcited electrons are capable of forming both small and large polarons on the surfaces of both crystal types.The analysis indicates that the differences in polaron distribution are primarily determined by the intrinsic properties of the crystals;the structural and symmetry differences between anatase and rutile TiO_(2) lead to the distinct polaron behaviors.Further investigation suggests that the polarization behavior of defect electrons is also related to the arrangement of electron orbitals around the Ti atoms,while the polarization of photoexcited electrons is mainly facilitated by the lattice distortions.These findings elucidate the formation mechanisms of different types of polarons and may contribute to understanding the performance of TiO_(2)in different fields.展开更多
Failure mode and effect analysis(FMEA)is a preven-tative risk evaluation method used to evaluate and eliminate fail-ure modes within a system.However,the traditional FMEA method exhibits many deficiencies that pose ch...Failure mode and effect analysis(FMEA)is a preven-tative risk evaluation method used to evaluate and eliminate fail-ure modes within a system.However,the traditional FMEA method exhibits many deficiencies that pose challenges in prac-tical applications.To improve the conventional FMEA,many modified FMEA models have been suggested.However,the majority of them inadequately address consensus issues and focus on achieving a complete ranking of failure modes.In this research,we propose a new FMEA approach that integrates a two-stage consensus reaching model and a density peak clus-tering algorithm for the assessment and clustering of failure modes.Firstly,we employ the interval 2-tuple linguistic vari-ables(I2TLVs)to express the uncertain risk evaluations provided by FMEA experts.Then,a two-stage consensus reaching model is adopted to enable FMEA experts to reach a consensus.Next,failure modes are categorized into several risk clusters using a density peak clustering algorithm.Finally,the proposed FMEA is illustrated by a case study of load-bearing guidance devices of subway systems.The results show that the proposed FMEA model can more easily to describe the uncertain risk information of failure modes by using the I2TLVs;the introduction of an endogenous feedback mechanism and an exogenous feedback mechanism can accelerate the process of consensus reaching;and the density peak clustering of failure modes successfully improves the practical applicability of FMEA.展开更多
In this paper,adiabatic density surface,neutral density surface and potential density surface are compared.The adiabatic density surface is defined as the surface on which a water parcel can move adiabatically,without...In this paper,adiabatic density surface,neutral density surface and potential density surface are compared.The adiabatic density surface is defined as the surface on which a water parcel can move adiabatically,without changing its potential temperature and salinity.For a water parcel taken at a given station and pressure level,the corresponding adiabatic density surface can be determined through simple calculations.This family of surface is neutrally buoyant in the world ocean,and different from other surfaces that are not truly neutrally buoyant.In order to explore mixing path in the ocean,a mixing ratio m is introduced,which is defined as the portion of potential temperature and salinity of a water parcel that has exchanged with the environment during a segment of migration in the ocean.Two extreme situations of mixing path in the ocean are m=0(no mixing),which is represented by the adiabatic density curve,and m=1,where the original information is completely lost through mixing.The latter is represented by the neutral density curve.The reality lies in between,namely,0<m<1.In the turbulent ocean,there are potentially infinite mixing paths,some of which may be identified by using different tracers(or their combinations)and different mixing criteria.Searching for mixing paths in the real ocean presents a great challenge for further research.展开更多
As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algori...As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.展开更多
The microstructure evolution of 7A85 aluminum alloy at the conditions of strain rate(0.001−1 s^(−1))and deformation temperature(250−450°C)was studied by optical microscopy(OM)and electron back scattering diffract...The microstructure evolution of 7A85 aluminum alloy at the conditions of strain rate(0.001−1 s^(−1))and deformation temperature(250−450°C)was studied by optical microscopy(OM)and electron back scattering diffraction(EBSD).Based on the K-M dislocation density model,a two-stage K-M dislocation density model of 7A85 aluminum alloy was established.The results reveal that dynamic recovery(DRV)and dynamic recrystallization(DRX)are the main mechanisms of microstructure evolution during thermal deformation of 7A85 aluminum alloy.350−400°C is the transformation zone from dynamic recovery to dynamic recrystallization.At low temperature(≤350°C),DRV is the main mechanism,while DRX mostly occurs at high temperature(≥400°C).At this point,the sensitivity of microstructure evolution to temperature is relatively high.As the temperature increased,the average misorientation angle(θˉ_(c))increased significantly,ranging from 0.93°to 7.13°.Meanwhile,the f_(LAGBs) decreased with the highest decrease of 24%.展开更多
This experiment obtained different laser energy density(LED) by changing SLM molding process parameters.The surface morphology, surface quality, and microstructure of as-fabricated samples were studied. The effects of...This experiment obtained different laser energy density(LED) by changing SLM molding process parameters.The surface morphology, surface quality, and microstructure of as-fabricated samples were studied. The effects of scanning speed, hatching space, and laser power on surface quality were analyzed, and the optimal LED range for surface quality was determined. The results show that pores and spherical particles appear on the sample’s surface when low LED is applied, while there are lamellar structures on the sides of the samples. Cracks appear on the sample’s surface,and the splash phenomenon increases when a high LED is taken. At the same time, a large amount of unmelted powder adhered to the side of the sample. The surface quality is the best when the LED is 150-170 J/mm^(3). The preferred hatch space is currently 0.05-0.09 mm, the laser power is 200-350 W, and the average surface roughness value is(15.1±3) μm.The average surface hardness reaches HV404±HV3, higher than the forging standard range of HV340-HV395.Increasing the LED within the experiment range can increase the surface hardness, yet an excessively high LED will not further increase the surface hardness. The microstructure is composed of needle-like α’-phases with a length of about 20μm, in a crisscross ‘N’ shape, when the LED is low. The β-phase grain boundary is not obvious, and the secondaryphase volume fraction is high;when the LED is high, the α’-phase of the microstructure is in the form of coarse slats, and the secondary-phase is composed of a small amount of secondary α’-phase, the tertiary α’-phase and the fourth α’-phase disappear, and the volume fraction of the secondary-phase becomes low.展开更多
The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influen...The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influence for the tracking results of different partitions is analyzed, and the form of the most informative partition is obtained. Then, a fast density peak-based clustering (FDPC) partitioning algorithm is applied to the measurement set partitioning. Since only one partition of the measurement set is used, the ET-PHD filter based on FDPC partitioning has lower computational complexity than the other ET-PHD filters. As FDPC partitioning is able to remove the spatially close clutter-generated measurements, the ET-PHD filter based on FDPC partitioning has good tracking performance in the scenario with more clutter-generated measurements. The simulation results show that the proposed algorithm can get the most informative partition and obviously reduce computational burden without losing tracking performance. As the number of clutter-generated measurements increased, the ET-PHD filter based on FDPC partitioning has better tracking performance than other ET-PHD filters. The FDPC algorithm will play an important role in the engineering realization of the multiple extended target tracking filter.展开更多
With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved ...With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.展开更多
文摘Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2021B0301030001)the National Key Research and Development Program of China(Grant No.2021YFB3802300)the Foundation of National Key Laboratory of Shock Wave and Detonation Physics(Grant No.JCKYS2022212004)。
文摘The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.
文摘High-density germanate glasses doped with Tb^(3+)ions were synthesized via the melt-quenching meth-od.The physical and luminescent properties of these glasses were characterized through various techniques,in-cluding density measurement,differential scanning calorimetry(DSC),photoluminescence(PL)spectroscopy,X-ray excited luminescence(XEL)spectroscopy,and fluorescence decay analysis.The densities of the germanate glasses were greater than 6.1 g/cm^(3).Upon excitations of ultraviolet(UV)light and X-rays,the glasses emitted in-tense green emissions.The fluorescence lifetime of the strongest emission peak at 544 nm,measured under 377 nm excitation,ranged from 1.52 ms to 1.32 ms.In the glass specimens,the maximum XEL integral intensity reached roughly 26%of that of the commercially available Bi_(4)Ge_(3)O_(12)(BGO)crystal.These results indicate that Tb^(3+)-doped high-density germanate scintillating glasses hold potential as scintillation materials for X-ray imaging applications.
文摘We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic lightemitting diode(OLED)materials.By utilizing electronic structure,frontier molecular orbitals,minimum single-line absorption,triplet excited states,and emission spectral data derived from the density functional theory,the usefulness of these Ir(Ⅲ)complexes,including(piq)_(2)Ir(acac),(piq)_(2)Ir(tmd),(piq)_(2)Ir(tpip),(fpiq)_(2)Ir(acac),(fpiq)_(2)Ir(tmd),and(fpiq)_(2)Ir(tpip),in OLEDs was examined,where piq=1-phenylisoquinoline,fpiq=1-(4-fluorophenyl)isoquinoline,acac=(3Z)-4-hydroxypent-3-en-2-one,tmd=(4Z)-5-hydroxy-2,2,6,6-tetramethylhept-4-en-3-one,and tpip=tetraphenylimido-diphosphonate.These complexes all have low-efficiency roll-off properties,especially(fpiq)_(2)Ir(tpip).Some researchers have successfully synthesized complexes extremely similar to(piq)_(2)Ir(acac)through the Suzuki-Miyaura coupling reaction.
基金supported by the Shanxi Province Central Guidance Fund for Local Science and Technology Development Project(YDZJSX2024D030)the National Natural Science Foundation of China(22075197,22278290)+2 种基金the Shanxi Province Key Research and Development Program Project(2021020660301013)the Shanxi Provincial Natural Science Foundation of China(202103021224079)the Research and Development Project of Key Core and Common Technology of Shanxi Province(20201102018).
文摘The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies.
基金supported by the National Natural Science Foundation of China(No.22375021,22235003,22261132516&22205021)the BIT Research and Innovation 265 Promoting Project(Grant No.2023YCXZ017)。
文摘Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involving both molecular isomerization and crystal morphology control was employed to design and optimize trinitromethyl-oxadiazole with improved comprehensive performance.Utilizing this dual strategy,3,5-bis(trinitromethyl)-1,2,4-oxadiazole(3)was synthesized,resulting in the formation of two distinct crystal morphologies(needle and sheet)corresponding to two crystal forms(3-a and3-b).Encouragingly,while maintaining ultra-high oxygen balance(21.73%),3 achieves impressive densities(1.97-1.98 g/cm^(3)).To our knowledge,the density of 1.98 g/cm^(3)for 3-a sets a new record among that of nitrogen-rich monocyclic compounds.Notably,practical crystal morphology prediction was creatively introduced to guide the experimental crystallization conditions of 3,increasing the impact sensitivity and friction sensitivity from 1 J to 80 N(3-a)to 10 J and 240 N(3-b),respectively.Additionally,the crystal structural analyses and theoretical calculations were conducted to elucidate the reasons of differences between 3-a and 3-b in density and stability.This work provides an efficient strategy to enhance performance of trinitromethyl derivatives,broadening the path and expanding the toolbox for energetic materials.
基金supported by the National Natural Science Foundation of China(Grant Nos.22105156,22175139,22171136,and 22302156)the China National Science Fund for Distinguished Young Scholars(Grant No.22325504)。
文摘The simultaneous integration of high energy density,low sensitivity,and thermal stability in energetic materials has constituted a century-long scientific challenge.Herein,we address this through a dualzwitterionic electronic delocalization strategy,yielding TYX-3,the first bis-inner salt triazolo-tetrazine framework combining these mutually exclusive properties.Uniformπ-electron distribution and elevated bond dissociation energy confer exceptional thermal stability(T_(d)=365℃)with TATB-level insensitivity(impact sensitivity IS>40 J,friction sensitivity FS>360 N).Engineeredπ-stacked networks enable record density(1.99 g·cm^(-3))with detonation performance surpassing HMX benchmarks(detonation velocity 9315 m·s^(-1),detonation pressure 36.6 GPa).Practical implementation in Poly(3-nitratomethyl-3-methyloxetane)(PNMMFO)solid propellants demonstrates 5.4-fold safety enhancement over conventional HMX-based formulations while maintaining equivalent specific impulse.This work establishes a new design paradigm for energetic materials,overcoming the historical trade-offs between molecular stability and energy output through rational zwitterionic engineering.
基金Projects(52274404,52305441,U22A20190)supported by the National Natural Science Foundation of ChinaProjects(2022JJ20065,2023JJ40739)supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2022RC1001)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(2023ZZTS0972)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2021YFB3400903)supported by the National Key R&D Program of China。
文摘The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formability of Al-Cu-Li alloy is vital.A thorough comparison of the effects of cryo-deformation and ambient temperature large pre-deformation(LPD)on the creep ageing response in the 2195 alloy sheet at 160℃with different stresses has been made.The evolution of dislocations and precipitates during creep ageing of LPD alloys are revealed by X-ray diffraction and transmission electron microscopy.High-quality 2195 alloy sheet largely pre-deformed by 80%without edge-cracking is obtained by cryo-rolling at liquid nitrogen temperature,while severe edge-cracking occurs during room temperature rolling.The creep formability and strength of the 2195 alloy are both enhanced by introducing pre-existing dislocations with a density over 1.4×10^(15)m^(−2).At 160℃and 150 MPa,creep strain and creep-aged strength generally increases by 4−6 times and 30−50 MPa in the LPD sample,respectively,compared to conventional T3 alloy counterpart.The elongation of creep-aged LPD sample is low but remains relevant for application.The high-density dislocations,though existing in the form of dislocation tangles,promote the formation of refined T1 precipitates with a uniform dispersion.
基金the National Natural Science Foundation of China(Grant No.11472137).
文摘This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is established considering the flexible deformation of the barrel and the interaction between the projectile and the barrel.Subsequently,the accuracy of the dynamic model is verified based on the external ballistic projectile attitude test platform.Furthermore,the probability density evolution method(PDEM)is developed to high-dimensional uncertainty quantification of projectile motion.The engineering example highlights the results of the proposed method are consistent with the results obtained by the Monte Carlo Simulation(MCS).Finally,the influence of parameter uncertainty on the projectile disturbance at muzzle under different working conditions is analyzed.The results show that the disturbance of the pitch angular,pitch angular velocity and pitch angular of velocity decreases with the increase of launching angle,and the random parameter ranges of both the projectile and coupling model have similar influence on the disturbance of projectile angular motion at muzzle.
基金supported by the Natural Science Foundation of Hunan Province(2023JJ50047,2023JJ40306)the Research Foundation of Education Bureau of Hunan Province(23A0494,20B260)the Key R&D Projects of Hunan Province(2019SK2331)。
文摘Aiming at the triangular fuzzy(TF)multi-attribute decision making(MADM)problem with a preference for the distribution density of attribute(DDA),a decision making method with TF number two-dimensional density(TFTD)operator is proposed based on the density operator theory for the decision maker(DM).Firstly,a simple TF vector clustering method is proposed,which considers the feature of TF number and the geometric distance of vectors.Secondly,the least deviation sum of squares method is used in the program model to obtain the density weight vector.Then,two TFTD operators are defined,and the MADM method based on the TFTD operator is proposed.Finally,a numerical example is given to illustrate the superiority of this method,which can not only solve the TF MADM problem with a preference for the DDA but also help the DM make an overall comparison.
文摘Objective To observe the value of artificial intelligence(AI)models based on non-contrast chest CT for measuring bone mineral density(BMD).Methods Totally 380 subjects who underwent both non-contrast chest CT and quantitative CT(QCT)BMD examination were retrospectively enrolled and divided into training set(n=304)and test set(n=76)at a ratio of 8∶2.The mean BMD of L1—L3 vertebrae were measured based on QCT.Spongy bones of T5—T10 vertebrae were segmented as ROI,radiomics(Rad)features were extracted,and machine learning(ML),Rad and deep learning(DL)models were constructed for classification of osteoporosis(OP)and evaluating BMD,respectively.Receiver operating characteristic curves were drawn,and area under the curves(AUC)were calculated to evaluate the efficacy of each model for classification of OP.Bland-Altman analysis and Pearson correlation analysis were performed to explore the consistency and correlation of each model with QCT for measuring BMD.Results Among ML and Rad models,ML Bagging-OP and Rad Bagging-OP had the best performances for classification of OP.In test set,AUC of ML Bagging-OP,Rad Bagging-OP and DL OP for classification of OP was 0.943,0.944 and 0.947,respectively,with no significant difference(all P>0.05).BMD obtained with all the above models had good consistency with those measured with QCT(most of the differences were within the range of Ax-G±1.96 s),which were highly positively correlated(r=0.910—0.974,all P<0.001).Conclusion AI models based on non-contrast chest CT had high efficacy for classification of OP,and good consistency of BMD measurements were found between AI models and QCT.
文摘Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.
文摘Polarons are widely considered to play a crucial role in the charge transport and photocatalytic performance of materials,but the mechanisms of their formation and the underlying driving factors remain a matter of controversy.This study delves into the formation of polarons in different crystalline forms of TiO_(2) and their connection with the materials'structure.By employing density functional theory calculations with on-site Coulomb interaction correction(DFT+U),we provide a detailed analysis of the electronic polarization behavior in the anatase and rutile forms of TiO_(2).We focus on the polarization properties of defect-induced and photoexcited excess electrons on various TiO_(2) surfaces.The results reveal that the defect electrons can form small polarons on the anatase TiO_(2)(101)surface,while on the rutile TiO_(2)(110)surface,both small and large polarons(hybrid-state polarons)are formed.Photoexcited electrons are capable of forming both small and large polarons on the surfaces of both crystal types.The analysis indicates that the differences in polaron distribution are primarily determined by the intrinsic properties of the crystals;the structural and symmetry differences between anatase and rutile TiO_(2) lead to the distinct polaron behaviors.Further investigation suggests that the polarization behavior of defect electrons is also related to the arrangement of electron orbitals around the Ti atoms,while the polarization of photoexcited electrons is mainly facilitated by the lattice distortions.These findings elucidate the formation mechanisms of different types of polarons and may contribute to understanding the performance of TiO_(2)in different fields.
基金supported by the Fundamental Research Funds for the Central Universities(22120240094)Humanities and Social Science Fund of Ministry of Education China(22YJA630082).
文摘Failure mode and effect analysis(FMEA)is a preven-tative risk evaluation method used to evaluate and eliminate fail-ure modes within a system.However,the traditional FMEA method exhibits many deficiencies that pose challenges in prac-tical applications.To improve the conventional FMEA,many modified FMEA models have been suggested.However,the majority of them inadequately address consensus issues and focus on achieving a complete ranking of failure modes.In this research,we propose a new FMEA approach that integrates a two-stage consensus reaching model and a density peak clus-tering algorithm for the assessment and clustering of failure modes.Firstly,we employ the interval 2-tuple linguistic vari-ables(I2TLVs)to express the uncertain risk evaluations provided by FMEA experts.Then,a two-stage consensus reaching model is adopted to enable FMEA experts to reach a consensus.Next,failure modes are categorized into several risk clusters using a density peak clustering algorithm.Finally,the proposed FMEA is illustrated by a case study of load-bearing guidance devices of subway systems.The results show that the proposed FMEA model can more easily to describe the uncertain risk information of failure modes by using the I2TLVs;the introduction of an endogenous feedback mechanism and an exogenous feedback mechanism can accelerate the process of consensus reaching;and the density peak clustering of failure modes successfully improves the practical applicability of FMEA.
文摘In this paper,adiabatic density surface,neutral density surface and potential density surface are compared.The adiabatic density surface is defined as the surface on which a water parcel can move adiabatically,without changing its potential temperature and salinity.For a water parcel taken at a given station and pressure level,the corresponding adiabatic density surface can be determined through simple calculations.This family of surface is neutrally buoyant in the world ocean,and different from other surfaces that are not truly neutrally buoyant.In order to explore mixing path in the ocean,a mixing ratio m is introduced,which is defined as the portion of potential temperature and salinity of a water parcel that has exchanged with the environment during a segment of migration in the ocean.Two extreme situations of mixing path in the ocean are m=0(no mixing),which is represented by the adiabatic density curve,and m=1,where the original information is completely lost through mixing.The latter is represented by the neutral density curve.The reality lies in between,namely,0<m<1.In the turbulent ocean,there are potentially infinite mixing paths,some of which may be identified by using different tracers(or their combinations)and different mixing criteria.Searching for mixing paths in the real ocean presents a great challenge for further research.
文摘As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.
基金Project(51675465)supported by the National Natural Science Foundation of ChinaProject(E2019203075)supported by the Natural Science Foundation of Hebei Province,China+1 种基金Project(BJ2019001)supported by the Top Young Talents Project of the Education Department of Hebei Province,ChinaProject(Kfkt2017-07)supported by the State Key Laboratory Program of High Performance Complex Manufacturing,China。
文摘The microstructure evolution of 7A85 aluminum alloy at the conditions of strain rate(0.001−1 s^(−1))and deformation temperature(250−450°C)was studied by optical microscopy(OM)and electron back scattering diffraction(EBSD).Based on the K-M dislocation density model,a two-stage K-M dislocation density model of 7A85 aluminum alloy was established.The results reveal that dynamic recovery(DRV)and dynamic recrystallization(DRX)are the main mechanisms of microstructure evolution during thermal deformation of 7A85 aluminum alloy.350−400°C is the transformation zone from dynamic recovery to dynamic recrystallization.At low temperature(≤350°C),DRV is the main mechanism,while DRX mostly occurs at high temperature(≥400°C).At this point,the sensitivity of microstructure evolution to temperature is relatively high.As the temperature increased,the average misorientation angle(θˉ_(c))increased significantly,ranging from 0.93°to 7.13°.Meanwhile,the f_(LAGBs) decreased with the highest decrease of 24%.
基金Projects(51975006, 51505006) supported by the National Natural Science Foundation of China。
文摘This experiment obtained different laser energy density(LED) by changing SLM molding process parameters.The surface morphology, surface quality, and microstructure of as-fabricated samples were studied. The effects of scanning speed, hatching space, and laser power on surface quality were analyzed, and the optimal LED range for surface quality was determined. The results show that pores and spherical particles appear on the sample’s surface when low LED is applied, while there are lamellar structures on the sides of the samples. Cracks appear on the sample’s surface,and the splash phenomenon increases when a high LED is taken. At the same time, a large amount of unmelted powder adhered to the side of the sample. The surface quality is the best when the LED is 150-170 J/mm^(3). The preferred hatch space is currently 0.05-0.09 mm, the laser power is 200-350 W, and the average surface roughness value is(15.1±3) μm.The average surface hardness reaches HV404±HV3, higher than the forging standard range of HV340-HV395.Increasing the LED within the experiment range can increase the surface hardness, yet an excessively high LED will not further increase the surface hardness. The microstructure is composed of needle-like α’-phases with a length of about 20μm, in a crisscross ‘N’ shape, when the LED is low. The β-phase grain boundary is not obvious, and the secondaryphase volume fraction is high;when the LED is high, the α’-phase of the microstructure is in the form of coarse slats, and the secondary-phase is composed of a small amount of secondary α’-phase, the tertiary α’-phase and the fourth α’-phase disappear, and the volume fraction of the secondary-phase becomes low.
基金supported by the National Natural Science Foundation of China(61401475)
文摘The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influence for the tracking results of different partitions is analyzed, and the form of the most informative partition is obtained. Then, a fast density peak-based clustering (FDPC) partitioning algorithm is applied to the measurement set partitioning. Since only one partition of the measurement set is used, the ET-PHD filter based on FDPC partitioning has lower computational complexity than the other ET-PHD filters. As FDPC partitioning is able to remove the spatially close clutter-generated measurements, the ET-PHD filter based on FDPC partitioning has good tracking performance in the scenario with more clutter-generated measurements. The simulation results show that the proposed algorithm can get the most informative partition and obviously reduce computational burden without losing tracking performance. As the number of clutter-generated measurements increased, the ET-PHD filter based on FDPC partitioning has better tracking performance than other ET-PHD filters. The FDPC algorithm will play an important role in the engineering realization of the multiple extended target tracking filter.
基金supported by the National Natural Science Foundation of China(61703228)
文摘With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.