期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于深度网络集成的复杂背景甘蔗叶片病害识别 被引量:1
1
作者 马巍巍 陈悦 王咏梅 《智慧农业(中英文)》 2025年第1期136-145,共10页
[目的/意义]农作物病害图像的随机性和复杂性仍给病害识别带来诸多挑战。针对自然条件下甘蔗叶片病害识别难题,本研究提出XEffDa模型。[方法]该模型利用色调、饱和度、亮度(Hue-Saturation-Value,HSV)颜色空间的图像分割与边缘处理技术... [目的/意义]农作物病害图像的随机性和复杂性仍给病害识别带来诸多挑战。针对自然条件下甘蔗叶片病害识别难题,本研究提出XEffDa模型。[方法]该模型利用色调、饱和度、亮度(Hue-Saturation-Value,HSV)颜色空间的图像分割与边缘处理技术去除背景干扰,根据特征融合策略,集成高效网络B0版本(Efficient Network B0,EfficientNetB0)、深度可分离卷积网络(Extreme Inception,Xception)和密集连接卷积网络201(Dense Convolutional Network 201,DenseNet201)作为特征提取器,采用预训练权重,通过贝叶斯优化确定顶层超参数,改进弹性网络(ElasticNet)正则化方法并加入随机失活(Dropout)层,以双重机制遏制过拟合现象。在甘蔗叶片病害数据集上训练并完成分类任务。[结果和讨论]模型集成后的识别准确率为97.62%,对比EfficientNetB0、Xception单模型及EfficientNetB0与其他深度网络结合模型识别准确率分别提高了9.96、6.04、8.09、4.19、1.78个百分点。融合实验进一步表明,加入改进ElasticNet正则化后的网络较主干网络其准确率、精确度、召回率及F1值分别提高了3.76、3.76、3.67及3.72个百分点。最大概率散点图结果显示预测最大概率值不低于0.5的比例高达99.4%。[结论]XEffDa模型具有更好的鲁棒性和泛化能力,能为农作物叶片病害精准防治提供参考。 展开更多
关键词 甘蔗叶片病害 图像识别 EfficientNet Xception densenet201 模型集成
在线阅读 下载PDF
基于深度学习的玉米病虫害智能诊断系统开发 被引量:3
2
作者 姚强 付忠军 +3 位作者 李君保 吕斌 粟超 郭彩霞 《南方农业》 2023年第17期84-88,共5页
使用自定义CNN和DenseNet201两种基于深度学习的网络,对大斑病、南方锈病、玉米黏虫、玉米蚜虫、玉米叶螨等10种常见玉米病虫害图像样本开展模型训练,并对部分训练结果进行了对比分析。发现所得val_accuracy大于0.8的模型中,基于CNN网... 使用自定义CNN和DenseNet201两种基于深度学习的网络,对大斑病、南方锈病、玉米黏虫、玉米蚜虫、玉米叶螨等10种常见玉米病虫害图像样本开展模型训练,并对部分训练结果进行了对比分析。发现所得val_accuracy大于0.8的模型中,基于CNN网络的模型相对稳定,val_loss值相对较小,说明在特定情况下基于CNN网络的模型收敛性相对较好,但DenseNet201网络更容易取得较高准确率的模型。面向Android系统开发基于深度学习的玉米病虫害智能诊断系统,并对系统开展诊断结果验证。验证结果:系统对于小斑病、纹枯病、茎腐病3种病害的诊断错误率较高,泛化能力不足。结论:开发基于深度学习的玉米病虫害智能诊断系统是可行的,但还需进一步调整完善。 展开更多
关键词 玉米病虫害 深度学习 CNN densenet201 智能诊断系统
在线阅读 下载PDF
基于卷积神经网络与ECOC-SVM的输电线路异物检测 被引量:23
3
作者 余沿臻 邱志斌 +2 位作者 周银彪 朱轩 王青 《智慧电力》 北大核心 2022年第3期87-92,107,共7页
输电线路悬挂异物会引发输电线路单相接地、相间短路等停电事故,因此本文提出一种基于卷积神经网络与ECOC-SVM的输电线路异物检测方法。首先,本文构建气球、风筝、塑料和鸟巢4种输电线路异物图像数据集;然后采用Otsu自适应阈值分割、形... 输电线路悬挂异物会引发输电线路单相接地、相间短路等停电事故,因此本文提出一种基于卷积神经网络与ECOC-SVM的输电线路异物检测方法。首先,本文构建气球、风筝、塑料和鸟巢4种输电线路异物图像数据集;然后采用Otsu自适应阈值分割、形态学处理等方法提取感兴趣区域;再利用DenseNet201提取感兴趣区域的特征;最后对ECOC-SVM模型进行训练、测试与结果分析。所用方法在4类异物上的平均识别准确率可达93.3%,有助于提高输电线路运维的效率。 展开更多
关键词 输电线路 异物检测 densenet201 卷积神经网络 ECOC-SVM
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部