Accurate estimation of soil lead pollution degree is one of the key steps in controlling soil lead pollution; vegetable hyperspectral features research provided a new approach to discovering and monitoring soil heavy ...Accurate estimation of soil lead pollution degree is one of the key steps in controlling soil lead pollution; vegetable hyperspectral features research provided a new approach to discovering and monitoring soil heavy metal pollution.Spectral reflectance implies information of pollution impacts on vegetation;estimation of lead pollution degree based on the spectral reflectance is equivalent to extraction of weak information.This study puts forward a new feature extraction method based展开更多
[目的]本研究旨在改善基于深度学习的遥感影像田块语义分割中出现的区域不封闭、边缘不贴合、噪点问题,并进一步修正语义分割的识别错误。[方法]以安徽省阜南县、江苏省淮安市为研究地点,自建了农田田块数据集,引入考虑影像多尺度特征...[目的]本研究旨在改善基于深度学习的遥感影像田块语义分割中出现的区域不封闭、边缘不贴合、噪点问题,并进一步修正语义分割的识别错误。[方法]以安徽省阜南县、江苏省淮安市为研究地点,自建了农田田块数据集,引入考虑影像多尺度特征的尺度分割思想与基于物候学的DESTIN(delineation by fusing spatial and temporal information)分割算法,提出了基于多尺度及DESTIN约束的高分遥感影像农田田块语义分割方法。[结果]多尺度与DESTIN约束下基于深度模型的田块语义分割有效改善模型出现的区域不封闭、边缘不贴合、噪点和块状模糊等问题,一定程度修正了深度模型语义分割的错误识别,IoU指标在2个测试集上分别达到94.08%和90.79%,相较深度模型的遥感影像田块语义分割分别提高1.65%和2.32%,对研究区域的田块提取区域更完整、精度更高。[结论]多尺度及DESTIN约束进一步改善了田块语义分割问题,有助于提高高分遥感影像的田块识别精度。展开更多
针对遥感地物建筑物图像目标尺度差异大、样本空间分布不均衡、地物边界模糊、场景区域跨度大所导致的分割效果不佳问题,本文提出一种融合动态特征增强高精度遥感建筑物分割算法。首先,构建New_GhostNetV2网络,利用自适应上下文感知卷积...针对遥感地物建筑物图像目标尺度差异大、样本空间分布不均衡、地物边界模糊、场景区域跨度大所导致的分割效果不佳问题,本文提出一种融合动态特征增强高精度遥感建筑物分割算法。首先,构建New_GhostNetV2网络,利用自适应上下文感知卷积,增强算法对样本空间特征的捕捉能力。其次,采用Ghost Convolution结合跳跃连接和特征分支策略设计多层级信息增强模块,增强特征整合。随后引入级联注意力CGA(cascaded group attention),通过组内独立注意力计算,加强模型对多样化地物形态的适应性。最后,通过动态深度特征增强器构造特征融合模块,进一步加强模型捕获能力。在WHU数据集上实验结果表明:改进算法较基线模型F1-Score提高8.57%,mIoU提高12.48%,与其他主流语义分割模型相比,改进DeepLabv3+具有更好的分割精度。展开更多
遥感图像目标检测在军事侦察、智慧农业等领域意义重大,特别是小目标检测一直获得持续关注。然而,遥感图像中的小目标面临特征信息不足、检测难度大等问题,成为困扰遥感检测应用发展的最大障碍。为此,提出YOLO-HF(you only look once-hy...遥感图像目标检测在军事侦察、智慧农业等领域意义重大,特别是小目标检测一直获得持续关注。然而,遥感图像中的小目标面临特征信息不足、检测难度大等问题,成为困扰遥感检测应用发展的最大障碍。为此,提出YOLO-HF(you only look once-hybrid feature)算法,该算法在传统YOLOv7模型的网络中,引入通道注意力和自注意力的混合注意力机制提取目标深层特征,并将浅层特征和深层特征进行融合,增加局部特征的丰富性;为进一步加强对全局信息的关注,在提取特征后为小尺度目标添加全局注意力机制,实现全局特征表达能力的提升;为避免传统损失函数对小目标位置偏差敏感,导致检测效果不佳,选择使用一种新的度量方式,将其嵌入边界框损失函数的计算中,从而加快损失函数的收敛,实现小目标检测精度的提升。实验结果表明:与传统YOLOv7算法相比,所提算法在RSOD和NWPU VHR-10数据集上均表现出优越性,特别地,在RSOD数据集上均值平均精度提升了2.90%,在NWPU VHR-10数据集上均值平均精度实现了3.61%的提升。展开更多
针对遥感图像微小目标检测中存在的浅层细化特征、深层语义表征和多尺度信息提取3个问题,提出一种综合运用多项技术的跨尺度YOLOv7(cross-scale YOLOv7,CSYOLOv7)网络。首先,设计跨阶段特征提取模块(cross-stage feature extraction mod...针对遥感图像微小目标检测中存在的浅层细化特征、深层语义表征和多尺度信息提取3个问题,提出一种综合运用多项技术的跨尺度YOLOv7(cross-scale YOLOv7,CSYOLOv7)网络。首先,设计跨阶段特征提取模块(cross-stage feature extraction module,CFEM)和感受野特征增强模块(receptive field feature enhancement module,RFFEM)。CFEM提高模型细化特征提取能力并抑制浅层下采样过程中特征的丢失,RFFEM加大网络对深层语义特征的提取力度,增强模型对目标上下文信息获取能力。其次,设计跨梯度空间金字塔池化模块(cross-gradient space pyramid pool module,CSPPM)有效融合微小目标多尺度的全局和局部特征。最后,用形状感知交并比(shape-aware intersection over union,Shape IoU)替换完全交并比(complete intersection over union,CIoU),提高模型在边界框定位任务中的精确度。实验结果表明,CSYOLOv7网络在DIOR(dataset for image object recognition)数据集和NWPU VHR-10(Northwestern Polytechnical University Very High Resolution-10)数据集上分别取得了74%和89.6%的检测精度,有效提升遥感图像微小目标的检测效果。展开更多
文摘Accurate estimation of soil lead pollution degree is one of the key steps in controlling soil lead pollution; vegetable hyperspectral features research provided a new approach to discovering and monitoring soil heavy metal pollution.Spectral reflectance implies information of pollution impacts on vegetation;estimation of lead pollution degree based on the spectral reflectance is equivalent to extraction of weak information.This study puts forward a new feature extraction method based
文摘[目的]本研究旨在改善基于深度学习的遥感影像田块语义分割中出现的区域不封闭、边缘不贴合、噪点问题,并进一步修正语义分割的识别错误。[方法]以安徽省阜南县、江苏省淮安市为研究地点,自建了农田田块数据集,引入考虑影像多尺度特征的尺度分割思想与基于物候学的DESTIN(delineation by fusing spatial and temporal information)分割算法,提出了基于多尺度及DESTIN约束的高分遥感影像农田田块语义分割方法。[结果]多尺度与DESTIN约束下基于深度模型的田块语义分割有效改善模型出现的区域不封闭、边缘不贴合、噪点和块状模糊等问题,一定程度修正了深度模型语义分割的错误识别,IoU指标在2个测试集上分别达到94.08%和90.79%,相较深度模型的遥感影像田块语义分割分别提高1.65%和2.32%,对研究区域的田块提取区域更完整、精度更高。[结论]多尺度及DESTIN约束进一步改善了田块语义分割问题,有助于提高高分遥感影像的田块识别精度。
文摘针对遥感地物建筑物图像目标尺度差异大、样本空间分布不均衡、地物边界模糊、场景区域跨度大所导致的分割效果不佳问题,本文提出一种融合动态特征增强高精度遥感建筑物分割算法。首先,构建New_GhostNetV2网络,利用自适应上下文感知卷积,增强算法对样本空间特征的捕捉能力。其次,采用Ghost Convolution结合跳跃连接和特征分支策略设计多层级信息增强模块,增强特征整合。随后引入级联注意力CGA(cascaded group attention),通过组内独立注意力计算,加强模型对多样化地物形态的适应性。最后,通过动态深度特征增强器构造特征融合模块,进一步加强模型捕获能力。在WHU数据集上实验结果表明:改进算法较基线模型F1-Score提高8.57%,mIoU提高12.48%,与其他主流语义分割模型相比,改进DeepLabv3+具有更好的分割精度。
文摘针对遥感图像微小目标检测中存在的浅层细化特征、深层语义表征和多尺度信息提取3个问题,提出一种综合运用多项技术的跨尺度YOLOv7(cross-scale YOLOv7,CSYOLOv7)网络。首先,设计跨阶段特征提取模块(cross-stage feature extraction module,CFEM)和感受野特征增强模块(receptive field feature enhancement module,RFFEM)。CFEM提高模型细化特征提取能力并抑制浅层下采样过程中特征的丢失,RFFEM加大网络对深层语义特征的提取力度,增强模型对目标上下文信息获取能力。其次,设计跨梯度空间金字塔池化模块(cross-gradient space pyramid pool module,CSPPM)有效融合微小目标多尺度的全局和局部特征。最后,用形状感知交并比(shape-aware intersection over union,Shape IoU)替换完全交并比(complete intersection over union,CIoU),提高模型在边界框定位任务中的精确度。实验结果表明,CSYOLOv7网络在DIOR(dataset for image object recognition)数据集和NWPU VHR-10(Northwestern Polytechnical University Very High Resolution-10)数据集上分别取得了74%和89.6%的检测精度,有效提升遥感图像微小目标的检测效果。