期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于扩散模型图像增强与多类特征融合的火焰燃烧状态智能识别
1
作者 汤健 杨薇薇 +2 位作者 夏恒 崔璨麟 乔俊飞 《北京工业大学学报》 北大核心 2025年第12期1502-1514,共13页
针对领域专家依据经验判断城市固废焚烧(municipal solid waste incineration,MSWI)过程中的火焰燃烧状态具有随意性、主观性和差异性,以及高质量火焰图像稀少等问题,提出基于去噪扩散概率模型(denoising diffusion probabilistic model... 针对领域专家依据经验判断城市固废焚烧(municipal solid waste incineration,MSWI)过程中的火焰燃烧状态具有随意性、主观性和差异性,以及高质量火焰图像稀少等问题,提出基于去噪扩散概率模型(denoising diffusion probabilistic model,DDPM)的图像增强与多类特征融合的火焰燃烧状态识别方法。首先,利用DDPM生成虚拟火焰图像以弥补高质量建模图像稀缺问题;然后,对由真实和虚拟图像混`合得到的建模数据采用LeNet-5模型提取深度特征,同时提取火焰图像的亮度、范围和颜色等物理特征;最后,面向上述混合特征构建基于深度森林分类(deep forest classification,DFC)的火焰燃烧状态识别模型。基于实际MSWI过程火焰图像验证了该方法的有效性和优越性。 展开更多
关键词 城市固废焚烧(municipal solid waste incineration MSWI) 火焰燃烧状态识别 去噪扩散概率模型(denoising diffusion probabilistic model DDPM) 深度特征 物理特征 深度森林分类(deep forest classification DFC)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部