期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于栈式降噪稀疏自编码器的极限学习机 被引量:14
1
作者 张国令 王晓丹 +2 位作者 李睿 来杰 向前 《计算机工程》 CAS CSCD 北大核心 2020年第9期61-67,共7页
极限学习机(ELM)随机选择网络输入权重和隐层偏置,存在网络结构复杂和鲁棒性较弱的不足。为此,提出基于栈式降噪稀疏自编码器(sDSAE)的ELM算法。利用sDSAE稀疏网络的优势,挖掘目标数据的深层特征,为ELM产生输入权值与隐层偏置以求得隐... 极限学习机(ELM)随机选择网络输入权重和隐层偏置,存在网络结构复杂和鲁棒性较弱的不足。为此,提出基于栈式降噪稀疏自编码器(sDSAE)的ELM算法。利用sDSAE稀疏网络的优势,挖掘目标数据的深层特征,为ELM产生输入权值与隐层偏置以求得隐层输出权值,完成训练分类器,同时通过加入稀疏性约束优化网络结构,提高算法分类准确率。实验结果表明,与ELM、PCA-ELM、ELM-AE和DAE-ELM算法相比,该算法在处理高维含噪数据时分类准确率较高,并且具有较强的鲁棒性。 展开更多
关键词 极限学习机 降噪稀疏自编码器 稀疏性 深度学习 特征提取
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部