The energy contents of biogas could be significantly enhanced by upgrading it to vehicle fuel quality.A pilot-scale separation plant based on carbon hollow fiber membranes for upgrading biogas to vehicle fuel quality ...The energy contents of biogas could be significantly enhanced by upgrading it to vehicle fuel quality.A pilot-scale separation plant based on carbon hollow fiber membranes for upgrading biogas to vehicle fuel quality was constructed and operated at the biogas plant,Gl?r IKS,Lillehammer Norway.Vehicle fuel quality according to Swedish legislation was successfully achieved in a single stage separation process.The raw biogas from anaerobic digestion of food waste contained 64±3 mol%CH_4,30–35 mol%CO_2 and less than one percent of N_2 and a minor amount of other impurities.The raw biogas was available at 1.03 bar with a maximum flow rate of 60 Nm^3h^(à1).Pre-treatment of biogas was performed to remove bulk H_2O and H_2S contents up to the required limits in the vehicle fuel before entering to membrane system.The membrane separation plant was designed to process 60 Nm^3h^(à1)of raw biogas at pressure up to 21 bar.The initial tests were,however,performed for the feed flow rate of 10 Nm^3h^(à1)at 21 bar.The successful operation of the pilot plant separation was continuously run for 192 h(8days).The CH_4 purity of 96%and maximum CH_4 recovery of 98%was reached in a short-term test of 5 h.The permeate stream contained over20 mol%CH_4which could be used for the heating application.Aspen Hysys~?was integrated with Chem Brane(in-house developed membrane model)to run the simulations for estimation of membrane area and energy requirement of the pilot plant.Cost estimation was performed based on simulation data and later compared with actual field results.展开更多
Shock-timing experiments are indispensable to inertial confinement fusion mainly because the timing of multiple shock waves is crucial to understanding the processes of laser irradiation of targets. Investigations int...Shock-timing experiments are indispensable to inertial confinement fusion mainly because the timing of multiple shock waves is crucial to understanding the processes of laser irradiation of targets. Investigations into shock waves driven by a two-step radiation pulse in polystyrene(CH) capsule targets are experimentally conducted at the Shen Guang Ⅱ laser facility. Differing from the traditional shock-timing implementation in which one shock wave could catch up with another one in solid CH, in this experiment, the second shock front in a rarefaction CH layer is observed through velocity interferometry. This second shock could also be made to converge with rarefaction waves within only a few micrometers of the CH capsule by designing the two-shock coalescence time. A shock-timing diagnostic technique to tune the multi-shock convergence in the CH capsule can thereby be achieved.The experimental results in the CH layer are quasi-quantitatively interpreted using streamlines simulated with the Multi-1 D program. The experimental results are expected to offer important information for target structure and laser pulse design, both of which are important for realizing inertial confinement fusion.展开更多
The construction of the first in the world 200 kt/a coal-toEG unit was conducted successfully,and commissioning of this unit was carried out recently with its official operation being slated,which has symbolized China...The construction of the first in the world 200 kt/a coal-toEG unit was conducted successfully,and commissioning of this unit was carried out recently with its official operation being slated,which has symbolized China as the first in the world that utilizes its proprietary technique for commercial manufacture of EG from coal.展开更多
On December 21, 2014 the first in the world coal-basedsecond-generation methanol-to-olefin (DMTO-II) commercialdemonstration unit was successfully started up atthe Clean Energy Chemical Company Limited in Puchengcit...On December 21, 2014 the first in the world coal-basedsecond-generation methanol-to-olefin (DMTO-II) commercialdemonstration unit was successfully started up atthe Clean Energy Chemical Company Limited in Puchengcity, Shaanxi province, which has symbolized the majorachievements of this phase associated with the disseminationand application of the new generation technology formanufacture of olefins from methanol, the independentintellectual property rights of which are in the hands ofthis Chinese enterprise.展开更多
On November 29,2013 the Shaanxi Coal Chemicals Technology Engineering Center,Ltd.(SCCTEC),the CNOOC Huizhou Refining and Chemical Company and the SINOPEC Luoyang Engineering Company,Ltd.signed an agreement on cooperat...On November 29,2013 the Shaanxi Coal Chemicals Technology Engineering Center,Ltd.(SCCTEC),the CNOOC Huizhou Refining and Chemical Company and the SINOPEC Luoyang Engineering Company,Ltd.signed an agreement on cooperation in development of展开更多
ZTE Corporation (ZTE), a leading global provider of telecommunications technology and network solutions, had a glaring presence at ITU TELECOM WORLD 2009 in Geneva, Switzerland, from October 5-9.
A simple process flow method for the fabrication of poly-Si nanowire thin film transistors(NW-TFTs) without advanced lithographic tools is introduced in this paper.The cross section of the nanowire channel was manip...A simple process flow method for the fabrication of poly-Si nanowire thin film transistors(NW-TFTs) without advanced lithographic tools is introduced in this paper.The cross section of the nanowire channel was manipulated to have a parallelogram shape by combining a two-step etching process and a spacer formation technique.The electrical and temperature characteristics of the developed NW-TFTs are measured in detail and compared with those of conventional planar TFTs(used as a control).The as-demonstrated NW-TFT exhibits a small subthreshold swing(191 mV/dec),a high ON/OFF ratio(8.5 × 10~7),alow threshold voltage(1.12 V),a decreased OFF-state current,and a low drain-induced-barrier lowering value(70.11 mV/V).The effective trap densities both at the interface and grain boundaries are also significantly reduced in the NW-TFT.The results show that all improvements of the NW-TFT originate from the enhanced gate controllability of the multi-gate over the channel.展开更多
We demonstrate a simple scheme of 6.835 GHz microwave source based on the sub-sampling phase lock loop(PLL). A dielectric resonant oscillator of 6.8 GHz is directly phase locked to an ultra-low phase noise 100 MHz ove...We demonstrate a simple scheme of 6.835 GHz microwave source based on the sub-sampling phase lock loop(PLL). A dielectric resonant oscillator of 6.8 GHz is directly phase locked to an ultra-low phase noise 100 MHz oven controlled crystal oscillator(OCXO) utilizing the sub-sampling PLL. Then the 6.8 GHz is mixed with 35 MHz from an direct digital synthesizer(DDS) which is also referenced to the 100 MHZ OCXO to generate the final6.835 GHz signal. Benefiting from the sub-sampling PLL, the processes of frequency multiplication, which are usually necessary in the development of a microwave source, are greatly simplified. The architecture of the microwave source is pretty simple. Correspondingly, its power consumption and cost are low. The absolute phase noises of the 6.835 GHz output signal are-47 d Bc/Hz,-77 dBc/Hz,-104 dBc/Hz and-121 dBc/Hz at1 Hz, 10 Hz, 100 Hz and 1 kHz offset frequencies, respectively. The frequency stability limited by the phase noise through the Dick effect is theoretically estimated to be better than 5.0 × 10^-14τ^1/2 when it is used as the local oscillator of the Rb atomic clocks. This low phase noise microwave source can also be used in other experiments of precision measurement physics.展开更多
There are various issues for CO_(2)flooding and storage in Shengli Oilfield,which are characterized by low light hydrocarbon content of oil and high miscible pressure,strong reservoir heterogeneity and low sweep effic...There are various issues for CO_(2)flooding and storage in Shengli Oilfield,which are characterized by low light hydrocarbon content of oil and high miscible pressure,strong reservoir heterogeneity and low sweep efficiency,gas channeling and difficult whole-process control.Through laboratory experiments,technical research and field practice,the theory and technology of CO_(2)high pressure miscible flooding and storage are established.By increasing the formation pressure to 1.2 times the minimum miscible pressure,the miscibility of the medium-heavy components can be improved,the production percentage of oil in small pores can be increased,the displacing front developed evenly,and the swept volume expanded.Rapid high-pressure miscibility is realized through advanced pressure flooding and energy replenishment,and technologies of cascade water-alternating-gas(WAG),injection and production coupling and multistage chemical plugging are used for dynamic control of flow resistance,so as to obtain the optimum of oil recovery and CO_(2)storage factor.The research results have been applied to the Gao89-Fan142 in carbon capture,utilization and storage(CCUS)demonstration site,where the daily oil production of the block has increased from 254.6 t to 358.2 t,and the recovery degree is expected to increase by 11.6 percentage points in 15 years,providing theoretical and technical support for the large-scale development of CCUS.展开更多
Space solar power(SSP)system,a major type of space-based power-generating equipment,is an important infrastructure providing massive,continuous,and stable green electricity by utilizing solar energy in space.Many coun...Space solar power(SSP)system,a major type of space-based power-generating equipment,is an important infrastructure providing massive,continuous,and stable green electricity by utilizing solar energy in space.Many countries and organizations consider SSP to be one of the most promising clean energy sources.The historical activities of SSP in the world are summarized.This review focuses on the significant development of SSP during the last 10 years,which is the most important period for SSP.The latest international SSP development programmes in the United States,ESA,Japan,China,UK and Korea are presented.Some significant solar power satellite(SPS)concepts proposed in the decade,including typical SPS-ALPHA,MR-SPS,CASSIOPeiA SPS,et al.,are introduced.The technical and non-technical challenges are also listed and several important in-space demonstration missions in recent years and in the near future are introduced.The conclusion is that the next 5 to 10 years will be an important period for rapidly developing the key technologies and conducting on-orbit demonstration and application.Controlling the mutual position relationship between the solar array and the transmitting antenna becomes a core issue to be considered in the innovative design of the SPS.Wireless power transmission technologies would be the demonstration focus for the first step.It is expected that the first commercial SPS would be constructed as early as 2040.展开更多
Prior to 2005 China’s mental health services were provided in the same manner as the other types of health services in the country. The hospital was the center of the service delivery network so medica staff only pro...Prior to 2005 China’s mental health services were provided in the same manner as the other types of health services in the country. The hospital was the center of the service delivery network so medica staff only provided services to those who came to the hospital and there was no continuity between hospita services and community services. This delivery system did not provide preventive services and was not展开更多
Quietly, with little apparent notice from even the strongest advocates for global mental health, China is undertaking the world’s largest - and arguably most important - mental health services demonstration proje...Quietly, with little apparent notice from even the strongest advocates for global mental health, China is undertaking the world’s largest - and arguably most important - mental health services demonstration project, a project focused on providing comprehensive care for persons with severe mental illnesses. As Professor Ma indicates in her short report,[1] the ’686 Project’ was launched as part of China’s commitment to rebuild its public health infrastructure following the SARS epidemic, and has now moved beyond the initial pilot phase into a process of scaling up展开更多
Firstly, a new analytical error model of the cumulative geoid height using the three-dimensional diagonal tensors of satellite gravity gradiometry (SGG) is introduced based on the variance-covariance matrix principl...Firstly, a new analytical error model of the cumulative geoid height using the three-dimensional diagonal tensors of satellite gravity gradiometry (SGG) is introduced based on the variance-covariance matrix principle. Secondly, a study for the requirements demonstration on the next-generation GOCE Follow-On satellite gravity gradiometry system is developed using different satellite orbital altitudes and measurement accuracies of satellite gravity gradiometer by the new analytical error model of SGG. The research results show that it is preferable to design satellite orbital altitudes of 300 km–400km and choose the measurement accuracies of 10-13/s2 –10-15/s2 from satellite gravity gradiometer. Finally, the complementarity of the four-stage satellite gravity missions, including past CHAMP, current GRACE, and GOCE, and next-generation GOCE Follow-On, is contrastively demonstrated for precisely recovering the Earth’s full-frequency gravitational field with high spatial resolution.展开更多
Moving from an institutional model of mental health care to a community oriented system of care has long been recognized as desirable because of the improved health and social outcomes generally achieved by avoidi...Moving from an institutional model of mental health care to a community oriented system of care has long been recognized as desirable because of the improved health and social outcomes generally achieved by avoiding institutionalization, and the enhanced stimulation possible in the community. But providing local comprehensive community care is a complex task, and while it is relatively straightforward to plan and implement small-scale demonstration projects, it is very challenging to undertake systematic implementation of such projects across a展开更多
Over the past two decades, as the main battlefield of China's international energy cooperation, countries along the Belt and Road have had good foundations in the foreign investment. Through China's efforts to...Over the past two decades, as the main battlefield of China's international energy cooperation, countries along the Belt and Road have had good foundations in the foreign investment. Through China's efforts to build the Belt and Road, energy cooperation has enjoyed first-mover advantages. Looking ahead, the countries along the Belt and Road are predicted to enjoy a promising future in energy cooperation because of their abundant energy resources, their role as complements to China's economic development, and their vast amounts of cooperation potential. At the same time, we are also keenly aware that there are a number of risks caused by geopolitics, policy changes, price fluctuations and legal compliance in energy cooperation among the countries along the Belt and Road. Moreover, it is urgent for Chinese enterprises to enhance their international capabilities. In this context, it is necessary to further maintain and make full use of their first-mover advantages and play a guiding and demonstrating role. Enterprises should actively adapt to new changes, while the government should make progress in policy coordination, facility connectivity, unimpeded trade, financed integration and people-to-people bonds, so as to keep deepening international energy cooperation and to build an energy silk road and a community with a shared future for energy.展开更多
To acquire human operation skill based on force sense, element contact form (ECF) is proposed to describe contact condition firstly. The skill is modeled as a sequence of discrete ECFs. Since different ECF has differe...To acquire human operation skill based on force sense, element contact form (ECF) is proposed to describe contact condition firstly. The skill is modeled as a sequence of discrete ECFs. Since different ECF has different force distribution, a support vector machine classifier is built to identify the contact conditions according to the force signal. Finally, the robot can obtain the skill from the human demonstration.展开更多
Over the past two decades, as the main battlefield of China's international energy cooperation, countries along the Belt and Road have had good foundations in the foreign investment. Through China's efforts to...Over the past two decades, as the main battlefield of China's international energy cooperation, countries along the Belt and Road have had good foundations in the foreign investment. Through China's efforts to build the Belt and Road, energy cooperation has enjoyed first-mover advantages. Looking ahead, the countries along the Belt and Road are predicted to enjoy a promising future in energy cooperation because of their abundant energy resources, their role as complements to China's economic development, and their vast amounts of cooperation potential. At the same time, we are also keenly aware that there are a number of risks caused by geopolitics, policy changes, price fluctuations and legal compliance in energy cooperation among the countries along the Belt and Road. Moreover, it is urgent for Chinese enterprises to enhance their international capabilities. In this context, it is necessary to further maintain and make full use of their first-mover advantages and play a guiding and demonstrating role. Enterprises should actively adapt to new changes, while the government should make progress in policy coordination, facility connectivity, unimpeded trade, financed integration and people-to-people bonds, so as to keep deepening international energy cooperation and to build an energy silk road and a community with a shared future for energy.展开更多
In the study of textlinguistics,cohesion is one important subject. According Halliday and Hasan,cohesion can be achieved through two ways. One is lexical cohesion and the other is grammatical cohesion. Reference is on...In the study of textlinguistics,cohesion is one important subject. According Halliday and Hasan,cohesion can be achieved through two ways. One is lexical cohesion and the other is grammatical cohesion. Reference is one of the most important devices in grammatical cohesion. It can be divided into personal reference,demonstrative reference,and comparative reference. Some of these references can be used as cataphora,some can be used as anaphora and some can be used as both. Analysis and explanation as well as examples are provided in this paper to facilitate the reader's understanding and use of reference.展开更多
文摘The energy contents of biogas could be significantly enhanced by upgrading it to vehicle fuel quality.A pilot-scale separation plant based on carbon hollow fiber membranes for upgrading biogas to vehicle fuel quality was constructed and operated at the biogas plant,Gl?r IKS,Lillehammer Norway.Vehicle fuel quality according to Swedish legislation was successfully achieved in a single stage separation process.The raw biogas from anaerobic digestion of food waste contained 64±3 mol%CH_4,30–35 mol%CO_2 and less than one percent of N_2 and a minor amount of other impurities.The raw biogas was available at 1.03 bar with a maximum flow rate of 60 Nm^3h^(à1).Pre-treatment of biogas was performed to remove bulk H_2O and H_2S contents up to the required limits in the vehicle fuel before entering to membrane system.The membrane separation plant was designed to process 60 Nm^3h^(à1)of raw biogas at pressure up to 21 bar.The initial tests were,however,performed for the feed flow rate of 10 Nm^3h^(à1)at 21 bar.The successful operation of the pilot plant separation was continuously run for 192 h(8days).The CH_4 purity of 96%and maximum CH_4 recovery of 98%was reached in a short-term test of 5 h.The permeate stream contained over20 mol%CH_4which could be used for the heating application.Aspen Hysys~?was integrated with Chem Brane(in-house developed membrane model)to run the simulations for estimation of membrane area and energy requirement of the pilot plant.Cost estimation was performed based on simulation data and later compared with actual field results.
基金Supported by the Science and Technology on Plasma Physics Laboratory under Grant No 9140C6801021001
文摘Shock-timing experiments are indispensable to inertial confinement fusion mainly because the timing of multiple shock waves is crucial to understanding the processes of laser irradiation of targets. Investigations into shock waves driven by a two-step radiation pulse in polystyrene(CH) capsule targets are experimentally conducted at the Shen Guang Ⅱ laser facility. Differing from the traditional shock-timing implementation in which one shock wave could catch up with another one in solid CH, in this experiment, the second shock front in a rarefaction CH layer is observed through velocity interferometry. This second shock could also be made to converge with rarefaction waves within only a few micrometers of the CH capsule by designing the two-shock coalescence time. A shock-timing diagnostic technique to tune the multi-shock convergence in the CH capsule can thereby be achieved.The experimental results in the CH layer are quasi-quantitatively interpreted using streamlines simulated with the Multi-1 D program. The experimental results are expected to offer important information for target structure and laser pulse design, both of which are important for realizing inertial confinement fusion.
文摘The construction of the first in the world 200 kt/a coal-toEG unit was conducted successfully,and commissioning of this unit was carried out recently with its official operation being slated,which has symbolized China as the first in the world that utilizes its proprietary technique for commercial manufacture of EG from coal.
文摘On December 21, 2014 the first in the world coal-basedsecond-generation methanol-to-olefin (DMTO-II) commercialdemonstration unit was successfully started up atthe Clean Energy Chemical Company Limited in Puchengcity, Shaanxi province, which has symbolized the majorachievements of this phase associated with the disseminationand application of the new generation technology formanufacture of olefins from methanol, the independentintellectual property rights of which are in the hands ofthis Chinese enterprise.
文摘On November 29,2013 the Shaanxi Coal Chemicals Technology Engineering Center,Ltd.(SCCTEC),the CNOOC Huizhou Refining and Chemical Company and the SINOPEC Luoyang Engineering Company,Ltd.signed an agreement on cooperation in development of
文摘ZTE Corporation (ZTE), a leading global provider of telecommunications technology and network solutions, had a glaring presence at ITU TELECOM WORLD 2009 in Geneva, Switzerland, from October 5-9.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0302300 and 2016YFA0200404)the National Natural Science Foundation of China(Grant No.61306105)+2 种基金the National Science and Technology Major Project of China(Grant No.2011ZX02708-002)the Tsinghua University Initiative Scientific Research Program,Chinathe Tsinghua National Laboratory for Information Science and Technology(TNList)Cross-discipline Foundation,China
文摘A simple process flow method for the fabrication of poly-Si nanowire thin film transistors(NW-TFTs) without advanced lithographic tools is introduced in this paper.The cross section of the nanowire channel was manipulated to have a parallelogram shape by combining a two-step etching process and a spacer formation technique.The electrical and temperature characteristics of the developed NW-TFTs are measured in detail and compared with those of conventional planar TFTs(used as a control).The as-demonstrated NW-TFT exhibits a small subthreshold swing(191 mV/dec),a high ON/OFF ratio(8.5 × 10~7),alow threshold voltage(1.12 V),a decreased OFF-state current,and a low drain-induced-barrier lowering value(70.11 mV/V).The effective trap densities both at the interface and grain boundaries are also significantly reduced in the NW-TFT.The results show that all improvements of the NW-TFT originate from the enhanced gate controllability of the multi-gate over the channel.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFA0304400the National Natural Science Foundation of China under Grant Nos 91336213,11703031,U1731132 and 11774108
文摘We demonstrate a simple scheme of 6.835 GHz microwave source based on the sub-sampling phase lock loop(PLL). A dielectric resonant oscillator of 6.8 GHz is directly phase locked to an ultra-low phase noise 100 MHz oven controlled crystal oscillator(OCXO) utilizing the sub-sampling PLL. Then the 6.8 GHz is mixed with 35 MHz from an direct digital synthesizer(DDS) which is also referenced to the 100 MHZ OCXO to generate the final6.835 GHz signal. Benefiting from the sub-sampling PLL, the processes of frequency multiplication, which are usually necessary in the development of a microwave source, are greatly simplified. The architecture of the microwave source is pretty simple. Correspondingly, its power consumption and cost are low. The absolute phase noises of the 6.835 GHz output signal are-47 d Bc/Hz,-77 dBc/Hz,-104 dBc/Hz and-121 dBc/Hz at1 Hz, 10 Hz, 100 Hz and 1 kHz offset frequencies, respectively. The frequency stability limited by the phase noise through the Dick effect is theoretically estimated to be better than 5.0 × 10^-14τ^1/2 when it is used as the local oscillator of the Rb atomic clocks. This low phase noise microwave source can also be used in other experiments of precision measurement physics.
基金Supported by the Sinopec"Ten Dragon"Major ProjectKey Research Projects of Sinopec(P22180)。
文摘There are various issues for CO_(2)flooding and storage in Shengli Oilfield,which are characterized by low light hydrocarbon content of oil and high miscible pressure,strong reservoir heterogeneity and low sweep efficiency,gas channeling and difficult whole-process control.Through laboratory experiments,technical research and field practice,the theory and technology of CO_(2)high pressure miscible flooding and storage are established.By increasing the formation pressure to 1.2 times the minimum miscible pressure,the miscibility of the medium-heavy components can be improved,the production percentage of oil in small pores can be increased,the displacing front developed evenly,and the swept volume expanded.Rapid high-pressure miscibility is realized through advanced pressure flooding and energy replenishment,and technologies of cascade water-alternating-gas(WAG),injection and production coupling and multistage chemical plugging are used for dynamic control of flow resistance,so as to obtain the optimum of oil recovery and CO_(2)storage factor.The research results have been applied to the Gao89-Fan142 in carbon capture,utilization and storage(CCUS)demonstration site,where the daily oil production of the block has increased from 254.6 t to 358.2 t,and the recovery degree is expected to increase by 11.6 percentage points in 15 years,providing theoretical and technical support for the large-scale development of CCUS.
基金Civil Aerospace Technology Research Project(D010103)。
文摘Space solar power(SSP)system,a major type of space-based power-generating equipment,is an important infrastructure providing massive,continuous,and stable green electricity by utilizing solar energy in space.Many countries and organizations consider SSP to be one of the most promising clean energy sources.The historical activities of SSP in the world are summarized.This review focuses on the significant development of SSP during the last 10 years,which is the most important period for SSP.The latest international SSP development programmes in the United States,ESA,Japan,China,UK and Korea are presented.Some significant solar power satellite(SPS)concepts proposed in the decade,including typical SPS-ALPHA,MR-SPS,CASSIOPeiA SPS,et al.,are introduced.The technical and non-technical challenges are also listed and several important in-space demonstration missions in recent years and in the near future are introduced.The conclusion is that the next 5 to 10 years will be an important period for rapidly developing the key technologies and conducting on-orbit demonstration and application.Controlling the mutual position relationship between the solar array and the transmitting antenna becomes a core issue to be considered in the innovative design of the SPS.Wireless power transmission technologies would be the demonstration focus for the first step.It is expected that the first commercial SPS would be constructed as early as 2040.
文摘Prior to 2005 China’s mental health services were provided in the same manner as the other types of health services in the country. The hospital was the center of the service delivery network so medica staff only provided services to those who came to the hospital and there was no continuity between hospita services and community services. This delivery system did not provide preventive services and was not
文摘Quietly, with little apparent notice from even the strongest advocates for global mental health, China is undertaking the world’s largest - and arguably most important - mental health services demonstration project, a project focused on providing comprehensive care for persons with severe mental illnesses. As Professor Ma indicates in her short report,[1] the ’686 Project’ was launched as part of China’s commitment to rebuild its public health infrastructure following the SARS epidemic, and has now moved beyond the initial pilot phase into a process of scaling up
基金Project supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences for Distinguished Young Scholar (Grant No. KZCX2-EW-QN114)the National Natural Science Foundation of China for Young Scholar (Grant Nos. 41004006, 41131067, 11173049, and 41202094)+5 种基金the Merit-based Scientific Research Foundation of the State Ministry of Human Resources and Social Security of China for Returned Overseas Chinese Scholars(Grant No. 2011)the Open Research Fund Program of the Key Laboratory of Computational Geodynamics of Chinese Academy of Sciences (Grant No. 2011-04)the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, China (Grant No. 11-01-02)the Open Research Fund Program of the Key Laboratory of Geo-Informatics of National Administration of Surveying, Mapping and Geoinformation of China(Grant No. 201322)the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Grant No. PLN1113)the Foundation of State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing (Grant No. PRP/open-1206)
文摘Firstly, a new analytical error model of the cumulative geoid height using the three-dimensional diagonal tensors of satellite gravity gradiometry (SGG) is introduced based on the variance-covariance matrix principle. Secondly, a study for the requirements demonstration on the next-generation GOCE Follow-On satellite gravity gradiometry system is developed using different satellite orbital altitudes and measurement accuracies of satellite gravity gradiometer by the new analytical error model of SGG. The research results show that it is preferable to design satellite orbital altitudes of 300 km–400km and choose the measurement accuracies of 10-13/s2 –10-15/s2 from satellite gravity gradiometer. Finally, the complementarity of the four-stage satellite gravity missions, including past CHAMP, current GRACE, and GOCE, and next-generation GOCE Follow-On, is contrastively demonstrated for precisely recovering the Earth’s full-frequency gravitational field with high spatial resolution.
文摘Moving from an institutional model of mental health care to a community oriented system of care has long been recognized as desirable because of the improved health and social outcomes generally achieved by avoiding institutionalization, and the enhanced stimulation possible in the community. But providing local comprehensive community care is a complex task, and while it is relatively straightforward to plan and implement small-scale demonstration projects, it is very challenging to undertake systematic implementation of such projects across a
文摘Over the past two decades, as the main battlefield of China's international energy cooperation, countries along the Belt and Road have had good foundations in the foreign investment. Through China's efforts to build the Belt and Road, energy cooperation has enjoyed first-mover advantages. Looking ahead, the countries along the Belt and Road are predicted to enjoy a promising future in energy cooperation because of their abundant energy resources, their role as complements to China's economic development, and their vast amounts of cooperation potential. At the same time, we are also keenly aware that there are a number of risks caused by geopolitics, policy changes, price fluctuations and legal compliance in energy cooperation among the countries along the Belt and Road. Moreover, it is urgent for Chinese enterprises to enhance their international capabilities. In this context, it is necessary to further maintain and make full use of their first-mover advantages and play a guiding and demonstrating role. Enterprises should actively adapt to new changes, while the government should make progress in policy coordination, facility connectivity, unimpeded trade, financed integration and people-to-people bonds, so as to keep deepening international energy cooperation and to build an energy silk road and a community with a shared future for energy.
文摘To acquire human operation skill based on force sense, element contact form (ECF) is proposed to describe contact condition firstly. The skill is modeled as a sequence of discrete ECFs. Since different ECF has different force distribution, a support vector machine classifier is built to identify the contact conditions according to the force signal. Finally, the robot can obtain the skill from the human demonstration.
文摘Over the past two decades, as the main battlefield of China's international energy cooperation, countries along the Belt and Road have had good foundations in the foreign investment. Through China's efforts to build the Belt and Road, energy cooperation has enjoyed first-mover advantages. Looking ahead, the countries along the Belt and Road are predicted to enjoy a promising future in energy cooperation because of their abundant energy resources, their role as complements to China's economic development, and their vast amounts of cooperation potential. At the same time, we are also keenly aware that there are a number of risks caused by geopolitics, policy changes, price fluctuations and legal compliance in energy cooperation among the countries along the Belt and Road. Moreover, it is urgent for Chinese enterprises to enhance their international capabilities. In this context, it is necessary to further maintain and make full use of their first-mover advantages and play a guiding and demonstrating role. Enterprises should actively adapt to new changes, while the government should make progress in policy coordination, facility connectivity, unimpeded trade, financed integration and people-to-people bonds, so as to keep deepening international energy cooperation and to build an energy silk road and a community with a shared future for energy.
文摘In the study of textlinguistics,cohesion is one important subject. According Halliday and Hasan,cohesion can be achieved through two ways. One is lexical cohesion and the other is grammatical cohesion. Reference is one of the most important devices in grammatical cohesion. It can be divided into personal reference,demonstrative reference,and comparative reference. Some of these references can be used as cataphora,some can be used as anaphora and some can be used as both. Analysis and explanation as well as examples are provided in this paper to facilitate the reader's understanding and use of reference.