期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The θ-Methods in Numerical Solution of Systems of Differential Equations with Two Delay Terms 被引量:2
1
作者 Tian Hongjiong & Kuang Jiaoxun (Department of Mathematics, Shanghai Normal University, Shanghai 200234, China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1994年第3期32-40,共9页
This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solutio... This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solution of test equations u'(t) = a 11 u(t) + a12v(t) + b11 u(t - τ1) + b12v(t-τ2,v'(t) = a21 u(t) + a22 v(t) + b21 u(t -τ1,) + b22 v(t -τ2), t>0,with initial conditionsu(t)=u0(t),v(t) =v0(t), t≤0.where aij, bij∈C, τj >0, i,j = 1,2,, and u0(t), v0(t)are continuous and complex valued. Sufficient conditions for the asymptotic stability of test equation are derived. Furthermore, with respect to an appropriate definition of stability for the numerical method, it is proved that the linear θ-method is stable if and only if 1/2≤θ≤1 and the one-leg θ-method is stable if and only if θ= 1. 展开更多
关键词 delay differential equations Numerical solution Θ-METHODS asymptotic stability Schur polynomial.
在线阅读 下载PDF
Generalization of integral inequalities and (c_1,c_1) stability of neutral differential equations with time-varying delays
2
作者 Shuli Guo Lina Han 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第2期347-360,共14页
A uniform stability analysis is developed for a type of neutral delays differential equations which depend on more general nonlinear integral inequalities. Many original investigations and results are obtained. Firstl... A uniform stability analysis is developed for a type of neutral delays differential equations which depend on more general nonlinear integral inequalities. Many original investigations and results are obtained. Firstly, generations of two integral nonlinear inequalities are presented, which are very effective in dealing with the complicated integro-differential inequalities whose variable exponents are greater than zero. Compared with existed integral inequalities, those proposed here can be applied to more complicated differential equations, such as time-varying delay neutral differential equations. Secondly, the notions of (ω, Ω) uniform stable and (ω, Ω) uniform asymptotically stable, especially (c1, c1) uniform stable and (c1, c1) uniform asymptotically stable, are presented. Sufficient conditions on about (c1, c1) uniform stable and (c1, c1) uniform asymptotically stable of time-varying delay neutral differential equations are established by the proposed integral inequalities. Finally, a complex numerical example is presented to illustrate the main results effectively. The above work allows to provide further applications on the proposed stability analysis and control system design for different nonlinear systems. © 2017 Beijing Institute of Aerospace Information. 展开更多
关键词 Control system stability differential equations Nonlinear equations Time delay Time varying control systems
在线阅读 下载PDF
A class of twostep continuity Runge-Kutta methods for solving singular delay differential equations and its convergence 被引量:1
3
作者 Leng Xin Liu Degui +1 位作者 Song Xiaoqiu Chen Lirong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期908-916,共9页
An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditio... An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditions and their convergence are studied. The two-step continuity Runge-Kutta methods possess good numerical stability properties and higher stage-order, and keep the explicit process of computing the Runge-Kutta stages. The numerical experiments show that the TSCRK methods are efficient. 展开更多
关键词 CONVERGENCE singular delay differential equations two-step continuity Runge-Kutta methods.
在线阅读 下载PDF
Attitude stabilization of rigid spacecraft implemented in backstepping control with input delay 被引量:1
4
作者 Xianting Bi Xiaoping Shi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期955-962,共8页
A backstepping method is used for nonlinear spacecraft attitude stabilization in the presence of external disturbances and time delay induced by the actuator. The kinematic model is established based on modified Rodri... A backstepping method is used for nonlinear spacecraft attitude stabilization in the presence of external disturbances and time delay induced by the actuator. The kinematic model is established based on modified Rodrigues parameters (MRPs). Firstly, we get the desired angular velocity virtually drives the attitude parameters to origin, and then backstep it to the desired control torque required for stabilization. Considering the time delay induced by the actuator, the control torque functions only after the delayed time, therefore time compensation is needed in the controller. Stability analysis of the close-loop system is given afterwards. The infinite dimensional actuator state is modeled with a first-order hyperbolic partial differential equation (PDE), the L-2 norm of the system state is constructed and is proved to be exponentially stable. An inverse optimality theorem is also employed during controller design. Simulation results illustrate the efficiency of the proposed control law and it is robust to bounded external disturbances and time delay mismatch. 展开更多
关键词 BaCKSTEPPING input delay partial differential equation (PDE) inverse optimality
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部