高光谱图像聚类算法可以对海量的高光谱图像数据进行信息提取,完成地物类别的初步分类。自适应近邻聚类(clustering with adaptive neighbors,CAN)作为一种新型的聚类算法,利用样本间的局部连通性实现聚类,聚类效果较好,但是该算法的性...高光谱图像聚类算法可以对海量的高光谱图像数据进行信息提取,完成地物类别的初步分类。自适应近邻聚类(clustering with adaptive neighbors,CAN)作为一种新型的聚类算法,利用样本间的局部连通性实现聚类,聚类效果较好,但是该算法的性能受样本间相关性的影响较大。基于此,文章提出了一种新的融合高光谱图像的空间信息和光谱信息的分类方法,即加权空-谱自适应近邻聚类(weighted spatial and spectral clustering with adaptive neighbors,WSS-CAN)法,该方法通过引入样本点的近邻窗口尺度和光谱因子2个参数对高光谱图像进行重构,增强了样本间的相关性,对重构后的图像进行CAN聚类,有效提高了分类精度。在Indian Pines和Salinas-A数据库上的实验结果表明,由WSS-CAN得到的总体精度分别为56.33%、77.90%,分别比其他聚类算法提升了11.52%~18.47%、10.1%~14.79%,聚类效果较好。展开更多
文摘高光谱图像聚类算法可以对海量的高光谱图像数据进行信息提取,完成地物类别的初步分类。自适应近邻聚类(clustering with adaptive neighbors,CAN)作为一种新型的聚类算法,利用样本间的局部连通性实现聚类,聚类效果较好,但是该算法的性能受样本间相关性的影响较大。基于此,文章提出了一种新的融合高光谱图像的空间信息和光谱信息的分类方法,即加权空-谱自适应近邻聚类(weighted spatial and spectral clustering with adaptive neighbors,WSS-CAN)法,该方法通过引入样本点的近邻窗口尺度和光谱因子2个参数对高光谱图像进行重构,增强了样本间的相关性,对重构后的图像进行CAN聚类,有效提高了分类精度。在Indian Pines和Salinas-A数据库上的实验结果表明,由WSS-CAN得到的总体精度分别为56.33%、77.90%,分别比其他聚类算法提升了11.52%~18.47%、10.1%~14.79%,聚类效果较好。
文摘为了提高辨识稳定图中真实模态的准确性与自动化程度,首先,从稳定点定义方式的角度论述了聚类算法效果欠佳的原因,并采用异阶系统非等权重的定义方式输出稳定点;其次,基于数据挖掘思想,采用改进的辨识聚类结构的有序点(ordering points to identify the clustering structure,简称OPTICS)算法自动清洗稳定点集,通过遍历性搜索的方式确定输入参数;然后,提出结合度矩阵去噪的自适应局部密度谱聚类(local density adaptive spectral clustering,简称SC-DA)算法分析稳定点集,并以簇中值作为模态参数的代表值,实现模态参数的自动化识别;最后,将含有密集模态的外滩大桥作为识别对象进行试验验证。试验结果表明:所提出方法具有较高的精度,与频域分解(frequency domain decomposition,简称FDD)法的频率结果最大相差仅为0.012 3 Hz,且在线识别的准确率达到82.86%,显著高于基于层次聚类的自动识别方法,实现了无人工干预下模态参数的自动、准确识别,具有一定的工程应用前景。