A similar material model and a numerical simulation were constructed and are described herein. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformat...A similar material model and a numerical simulation were constructed and are described herein. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformation of the roof and floor, the relative deformation of the two sides and the deformation of the deep surrounding rock are predicted using the model. Measurements in a working mine are compared to the results of the models. The results show that the surrounding rock shows clear theological features under high stress conditions. Deformation is unequally distributed across the whole section. The surrounding rock exhibited three deformation stages: displacement caused by stress concentration, theological displacement after the digging effects had stabilized and displacement caused by supporting pressure of the roadway. Floor heave was serious, accounting for 65% of the total deformation of the roof and floor. Floor heave is the main reason for failure of the surrounding rock. The reasons for deformation of the surrounding rock are discussed based on the similar material and numerical simulations.展开更多
Based on the theory of superimposed deformation and the regional tectonic background,the multi-phase non-coaxial superimposed structures in Junggar Basin were systematically analyzed using seismic interpretation,field...Based on the theory of superimposed deformation and the regional tectonic background,the multi-phase non-coaxial superimposed structures in Junggar Basin were systematically analyzed using seismic interpretation,field outcrop observation,and paleo-stress field recovery methods according to the characteristics of the current tectonic framework.Moreover,the tectonic evolution process of the basin was reconstructed using sandbox analogue modelling technology.The results showed that the study area has experienced five phases of non-coaxial deformation with superimposition:The first phase of deformation(D1)is characterized by NNE-SSW extension during late Carboniferous to early Permian,which formed large graben,half graben and other extensional structure style around the basin.The second phase of deformation(D2)is represented by NE-SW compression during the middle to late Permian,and it comprised numerous contraction structures that developed based on D1.The basic form of the entire basin is alternating uplift and depression.The third phase of deformation(D3)is the NW-SE transpressional strike-slip in the Triassic-Jurassic,which produced numerous strike-slip structural styles in the middle part of the basin.The fourth phase of deformation(D4)is the uniform sedimentation during Cretaceous,and the fifth phase(D5)is the compression along NNE-SSW due to the North Tianshan northward thrust,which produced three rows of fold thrust belts and tear faults in the front of the mountain in the southern margin of the basin.The newly established three-dimensional tectonic evolution model shows that,based on the large number of NW-trending grabens and half grabens in the Carboniferous basement of Junggar Basin,multiple level NE trending uplifts have formed with the joint superposition of the late structural inversion and multiple stress fields.This has resulted in the current tectonic units of alternating uplifts and depressions in different directions in the study area.展开更多
Methane in-situ explosive fracturing technology produces shale debris particles within fracture channels,enabling a self-propping effect that enhances the fracture network conductivity and long-term stability.This stu...Methane in-situ explosive fracturing technology produces shale debris particles within fracture channels,enabling a self-propping effect that enhances the fracture network conductivity and long-term stability.This study employs X-ray computed tomography(CT)and digital volume correlation(DVC)to investigate the microstructural evolution and hydromechanical responses of shale self-propped fracture under varying confining pressures,highlighting the critical role of shale particles in maintaining fracture conductivity.Results indicate that the fracture aperture in the self-propped sample is significantly larger than in the unpropped sample throughout the loading process,with shale particles tending to crush rather than embedded into the matrix,thus maintaining flow pathways.As confining pressure increases,contact areas between fracture surfaces and particles expand,enhancing the system's stability and compressive resistance.Geometric analyses show flow paths becoming increasingly concentrated and branched under high stress.This resulted in a significant reduction in connectivity,restricting fracture permeability and amplifying the nonlinear gas flow behavior.This study introduces a permeability-strain recovery zone and a novel sensitivity parameter m,delineating stress sensitivity boundaries for permeability and normal strain,with m-value increasing with stress,revealing four characteristic regions.These findings offer theoretical support for optimizing fracturing techniques to enhance resource extraction efficiency.展开更多
The characteristics of lubricant film at head/disk interface (HDI) are essential to the stability of hard disk drives. In this study, the theoretical models of the lubricant flow and depletion are deduced based on N...The characteristics of lubricant film at head/disk interface (HDI) are essential to the stability of hard disk drives. In this study, the theoretical models of the lubricant flow and depletion are deduced based on Navier-Stokes (NS) and continuity equations. The air bearing pressure on the surface of the lubrication film is solved by the modified Reynolds equation based on Fukui and Kaneko (FK) model. Then the lubricant film deformations for a plane slider and double-track slider are obtained. The equation of lubricant film thickness is deduced with the consideration of van der Waals force, the air bearing pressure, the surface tension, and the external stresses. The lubricant depletion under heat source is simulated and the effects of different working conditions including initial thickness, flying height and the speed of the disk on lubricant depletion are discussed. The main factors that cause the lubricant flow and depletion are analyzed and the ways to reduce the film thickness deformation are proposed. The simulation results indicate that the shearing stress is the most important factor that causes the thickness deformation and other terms listed in the equation have little influence. The thickness deformation is dependent on the working parameter, and the thermal condition evaporation is the most important factor.展开更多
In order to investigate the physical and mechanical properties of sandstone containing fissures after exposure to high temperatures,fissures with different angles α were prefabricated in the plate sandstone samples,a...In order to investigate the physical and mechanical properties of sandstone containing fissures after exposure to high temperatures,fissures with different angles α were prefabricated in the plate sandstone samples,and the processed samples were then heated at 5 different temperatures.Indoor uniaxial compression was conducted to analyze the change rules of physical properties of sandstone after exposure to high temperature,and the deformation,strength and failure characteristics of sandstone containing fissures.The results show that,with increasing temperature,the volume of sandstone increases gradually while the quality and density decrease gradually,and the color of sandstone remains basically unchanged while the brightness increases markedly when the temperature is higher than 585 ℃;the peak strength of sandstone containing fissures first decreases then increases when the temperature is between 25℃and 400℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature,and the mechanical properties of sandstone show obvious deterioration after 400 ℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature;with increasing angle αof the fissure,the evolution characteristics of the macro-mechanical parameters of sandstone are closely related to the their own mechanical properties.When the temperature is 800 ℃,the correlation between the peak strength and average modulus of sandstone and the angle α of the fissure is obviously weakened.The failure modes of sandstone containing fissures after high temperature exposure are of three different kinds including:tensile crack failure,tensile and shear cracks mixed failure,and shear crack failure.Tensile and shear crack mixed failure occur mainly at low temperatures and small angles;tensile crack failure occurs at high temperatures and large angles.展开更多
In the last years,shale gas has gradually substituted oil and coal as the main sources of energy in the world.Compared with shallow shale gas reservoirs,deep shale is characterized by low permeability,low porosity,str...In the last years,shale gas has gradually substituted oil and coal as the main sources of energy in the world.Compared with shallow shale gas reservoirs,deep shale is characterized by low permeability,low porosity,strong heterogeneity,and strong anisotropy.In the process of multi-cluster fracturing of horizontal wells,the whole deformation process and destruction modes are significantly influenced by loading rates.In this investigation,the servo press was used to carry out semi-circular bend(SCB)mixedmode fracture experiments in deep shales(130,160,190℃)with prefabricated fractures under different loading rates(0.02,0.05,0.1,0.2 mm/min).The fracture propagation process was monitored using acoustic emission.The deformation characteristics,displacementeload curve,and acoustic emission parameters of shale under different loading rates were studied during the mixed-mode fracture propagation.Our results showed that during the deformation and fracture of the specimen,the acoustic emission energy and charge significantly increased near the stress peak,showing at this point the most intense acoustic emission activity.With the increase in loading rate,the fracture peak load of the deep shale specimen also increased.However,the maximum displacement decreased to different extents.With the increase in temperature,the effective fracture toughness of the deep shale gradually decreased.Also,the maximum displacement decreased.Under different loading rates,the deformation of the prefabricated cracks showed a nonlinear slow growthelinear growth trend.The slope of the linear growth stage increased with the increase in loading rate.In addition,as the loading rate increased,an increase in tension failure and a decrease in shear failure were observed.Moreover,the control chart showing the relationship between tension and the shear failure under different temperatures and loading rates was determined.展开更多
基金Project 40773040 supported by the National Basic Research Program of China
文摘A similar material model and a numerical simulation were constructed and are described herein. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformation of the roof and floor, the relative deformation of the two sides and the deformation of the deep surrounding rock are predicted using the model. Measurements in a working mine are compared to the results of the models. The results show that the surrounding rock shows clear theological features under high stress conditions. Deformation is unequally distributed across the whole section. The surrounding rock exhibited three deformation stages: displacement caused by stress concentration, theological displacement after the digging effects had stabilized and displacement caused by supporting pressure of the roadway. Floor heave was serious, accounting for 65% of the total deformation of the roof and floor. Floor heave is the main reason for failure of the surrounding rock. The reasons for deformation of the surrounding rock are discussed based on the similar material and numerical simulations.
基金supported by the National Natural Science Foundation of China,(Grant No.42072144)Shengli Oilfield,SINOPEC,China(Nos.30200018-21-ZC0613-0030 and 30200018-20-ZC0613-0116)。
文摘Based on the theory of superimposed deformation and the regional tectonic background,the multi-phase non-coaxial superimposed structures in Junggar Basin were systematically analyzed using seismic interpretation,field outcrop observation,and paleo-stress field recovery methods according to the characteristics of the current tectonic framework.Moreover,the tectonic evolution process of the basin was reconstructed using sandbox analogue modelling technology.The results showed that the study area has experienced five phases of non-coaxial deformation with superimposition:The first phase of deformation(D1)is characterized by NNE-SSW extension during late Carboniferous to early Permian,which formed large graben,half graben and other extensional structure style around the basin.The second phase of deformation(D2)is represented by NE-SW compression during the middle to late Permian,and it comprised numerous contraction structures that developed based on D1.The basic form of the entire basin is alternating uplift and depression.The third phase of deformation(D3)is the NW-SE transpressional strike-slip in the Triassic-Jurassic,which produced numerous strike-slip structural styles in the middle part of the basin.The fourth phase of deformation(D4)is the uniform sedimentation during Cretaceous,and the fifth phase(D5)is the compression along NNE-SSW due to the North Tianshan northward thrust,which produced three rows of fold thrust belts and tear faults in the front of the mountain in the southern margin of the basin.The newly established three-dimensional tectonic evolution model shows that,based on the large number of NW-trending grabens and half grabens in the Carboniferous basement of Junggar Basin,multiple level NE trending uplifts have formed with the joint superposition of the late structural inversion and multiple stress fields.This has resulted in the current tectonic units of alternating uplifts and depressions in different directions in the study area.
基金financially supported by the National Key Research and Development Program of China (No.2020YFA0711800)the National Science Fund for Distinguished Young Scholars (No.51925404)+2 种基金the Graduate Innovation Program of China University of Mining and Technology (No.2023WLKXJ149)the Fundamental Research Funds for the Central Universities (No.2023XSCX040)the Postgraduate Research Practice Innovation Program of Jiangsu Province (No.KYCX23_2864)。
文摘Methane in-situ explosive fracturing technology produces shale debris particles within fracture channels,enabling a self-propping effect that enhances the fracture network conductivity and long-term stability.This study employs X-ray computed tomography(CT)and digital volume correlation(DVC)to investigate the microstructural evolution and hydromechanical responses of shale self-propped fracture under varying confining pressures,highlighting the critical role of shale particles in maintaining fracture conductivity.Results indicate that the fracture aperture in the self-propped sample is significantly larger than in the unpropped sample throughout the loading process,with shale particles tending to crush rather than embedded into the matrix,thus maintaining flow pathways.As confining pressure increases,contact areas between fracture surfaces and particles expand,enhancing the system's stability and compressive resistance.Geometric analyses show flow paths becoming increasingly concentrated and branched under high stress.This resulted in a significant reduction in connectivity,restricting fracture permeability and amplifying the nonlinear gas flow behavior.This study introduces a permeability-strain recovery zone and a novel sensitivity parameter m,delineating stress sensitivity boundaries for permeability and normal strain,with m-value increasing with stress,revealing four characteristic regions.These findings offer theoretical support for optimizing fracturing techniques to enhance resource extraction efficiency.
基金Project supported by the National Natural Science Foundation of China(Grant No.51275124)
文摘The characteristics of lubricant film at head/disk interface (HDI) are essential to the stability of hard disk drives. In this study, the theoretical models of the lubricant flow and depletion are deduced based on Navier-Stokes (NS) and continuity equations. The air bearing pressure on the surface of the lubrication film is solved by the modified Reynolds equation based on Fukui and Kaneko (FK) model. Then the lubricant film deformations for a plane slider and double-track slider are obtained. The equation of lubricant film thickness is deduced with the consideration of van der Waals force, the air bearing pressure, the surface tension, and the external stresses. The lubricant depletion under heat source is simulated and the effects of different working conditions including initial thickness, flying height and the speed of the disk on lubricant depletion are discussed. The main factors that cause the lubricant flow and depletion are analyzed and the ways to reduce the film thickness deformation are proposed. The simulation results indicate that the shearing stress is the most important factor that causes the thickness deformation and other terms listed in the equation have little influence. The thickness deformation is dependent on the working parameter, and the thermal condition evaporation is the most important factor.
基金supported by the State Key Development Program for Basic Research of China(No.2013CB036003)the National Natural Science Foundation of China(No.51374198)the CUMT Innovation and Entrepreneurship Fund for Undergraduates(No.201509)
文摘In order to investigate the physical and mechanical properties of sandstone containing fissures after exposure to high temperatures,fissures with different angles α were prefabricated in the plate sandstone samples,and the processed samples were then heated at 5 different temperatures.Indoor uniaxial compression was conducted to analyze the change rules of physical properties of sandstone after exposure to high temperature,and the deformation,strength and failure characteristics of sandstone containing fissures.The results show that,with increasing temperature,the volume of sandstone increases gradually while the quality and density decrease gradually,and the color of sandstone remains basically unchanged while the brightness increases markedly when the temperature is higher than 585 ℃;the peak strength of sandstone containing fissures first decreases then increases when the temperature is between 25℃and 400℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature,and the mechanical properties of sandstone show obvious deterioration after 400 ℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature;with increasing angle αof the fissure,the evolution characteristics of the macro-mechanical parameters of sandstone are closely related to the their own mechanical properties.When the temperature is 800 ℃,the correlation between the peak strength and average modulus of sandstone and the angle α of the fissure is obviously weakened.The failure modes of sandstone containing fissures after high temperature exposure are of three different kinds including:tensile crack failure,tensile and shear cracks mixed failure,and shear crack failure.Tensile and shear crack mixed failure occur mainly at low temperatures and small angles;tensile crack failure occurs at high temperatures and large angles.
基金supported by the National Natural Science Foundation of China(No.52204007)the Natural Science Foundation of Heilongjiang Province of China(YQ2021E005)+1 种基金New Era Longjiang Outstanding Master's and Doctoral Thesis Project(LJYXL2022-002)Key Laboratory of Enhanced Oil and Gas Recovery,Ministry of Education(NEPU-EOR-2022-04).
文摘In the last years,shale gas has gradually substituted oil and coal as the main sources of energy in the world.Compared with shallow shale gas reservoirs,deep shale is characterized by low permeability,low porosity,strong heterogeneity,and strong anisotropy.In the process of multi-cluster fracturing of horizontal wells,the whole deformation process and destruction modes are significantly influenced by loading rates.In this investigation,the servo press was used to carry out semi-circular bend(SCB)mixedmode fracture experiments in deep shales(130,160,190℃)with prefabricated fractures under different loading rates(0.02,0.05,0.1,0.2 mm/min).The fracture propagation process was monitored using acoustic emission.The deformation characteristics,displacementeload curve,and acoustic emission parameters of shale under different loading rates were studied during the mixed-mode fracture propagation.Our results showed that during the deformation and fracture of the specimen,the acoustic emission energy and charge significantly increased near the stress peak,showing at this point the most intense acoustic emission activity.With the increase in loading rate,the fracture peak load of the deep shale specimen also increased.However,the maximum displacement decreased to different extents.With the increase in temperature,the effective fracture toughness of the deep shale gradually decreased.Also,the maximum displacement decreased.Under different loading rates,the deformation of the prefabricated cracks showed a nonlinear slow growthelinear growth trend.The slope of the linear growth stage increased with the increase in loading rate.In addition,as the loading rate increased,an increase in tension failure and a decrease in shear failure were observed.Moreover,the control chart showing the relationship between tension and the shear failure under different temperatures and loading rates was determined.