In practical application, it is very important to master the influence of structure parameters on the mid-span deflection quantificationally. For large-span and heavy-duty gantry cranes, the influence of the rigid leg...In practical application, it is very important to master the influence of structure parameters on the mid-span deflection quantificationally. For large-span and heavy-duty gantry cranes, the influence of the rigid leg and the soft leg on mid-span deflection has not been considered in the past. In the paper, the mathematical model is established for universal large-span and heavy-duty gantry cranes. The analytical solution for the mid-span deflection of gantry-frame structure girder is derived and obtained based on the variation principle by considering the coupling effect of the bending moments of girder and legs, the axial force and the secondary bending moments. The relation between the load and the deflection on the mid-span of the gantry-frame structure girder is known. Then, the experimental model is designed according to dimensional analysis method. And experiments were performed on the WEW-600 B type testing machine. Hackling experimental data, the regular of the load and deflection on the girder mid-span is obtained, namely, the deformation of the gantry-frame structure resists the external load to do work. The validity of the nonlinear analytical solution of the girder deflection is verified. Experimental results show that the analytical solution of the gantry-frame structure deflection has much higher calculation accuracy than previous calculation method. This work provides a theoretical basis for the design and inspection of gantry-frame structures.展开更多
A perforation model is developed to predict the attitude deflection in the oblique perforation of concrete targets by a rigid projectile,in which the inertial moment of the projectile is introduced,together with takin...A perforation model is developed to predict the attitude deflection in the oblique perforation of concrete targets by a rigid projectile,in which the inertial moment of the projectile is introduced,together with taking the attitude deflection during the shear plugging sub-stage into account,and the shape of the plug formed on the rear surface of target is also re-investigated.Moreover,a new classification of concrete targets is proposed based on the target thickness,with which the attitude deflections in different kinds of concrete targets are analyzed.It is found that the numerical results by using the new perforation model are in good agreement with the previous experimental data and simulated results.Furthermore,the variations of the attitude deflection with the initial conditions(the initial attitude angle and the initial impact velocity) are investigated.展开更多
Despite appropriate design of girder under bending and shear,the deflection of long steel girders usually exceeds the allowable range,and therefore the structural designers encounter challenges in this regard.Consider...Despite appropriate design of girder under bending and shear,the deflection of long steel girders usually exceeds the allowable range,and therefore the structural designers encounter challenges in this regard.Considering significant features of the cables,namely,low weight,small cross section,and high tensile strength,they are used in this research so as to control the deflection of long girder bridges,rather than increasing their heights.In this study,theoretical relations are developed to calculate the increase in pre-tensioning force of V-shaped steel cables under external loading as well as the deflection of steel girder bridges with V-shaped cables and different support conditions.To verify the theoretical relations,the steel girder bridge is modeled in the finite element ABAQUS software with different support conditions without cable and with V-shaped cables.The obtained results show that the theoretical relations can appropriately predict the deflection of girder bridge with V-shaped cables and different support conditions.In this study,the effects of the distance from support on the deflection of mid span are studied in both simply supported and fixed supported girder bridge so as to obtain the appropriate distance from support causing the minimum deflection.展开更多
The multiple cracking and deflection hardening performance of polyvinyl alcohol fiber reinforced engineered cementitious composites(PVA-ECC)under four-point flexural loading have been investigated.Matrices with differ...The multiple cracking and deflection hardening performance of polyvinyl alcohol fiber reinforced engineered cementitious composites(PVA-ECC)under four-point flexural loading have been investigated.Matrices with different binder combinations and W/B ratios(from 0.44 to 0.78)providing satisfactory PVA fiber dispersion were specially designed.Effect of pre-existing flaw size distribution modification on deflection hardening behavior was comparatively studied by adding 3 mm diameter polyethylene beads into the mixtures(6%by total volume).Natural flaw size distributions of composites without beads were determined by cross sectional analysis.The crack number and crack width distributions of specimens after flexural loading were characterized and the possible causes of changes in multiple cracking and deflection hardening behavior by flaw size distribution modification were discussed.Promising results from the view point of deflection hardening behavior were obtained from metakaolin incorporated and flaw size distribution modified PVA-ECCs prepared with W/B=0.53.The dual roles of W/B ratio and superplasticizer content on flaw size distribution,cracking potential and fiber-matrix bond behavior were evaluated.Flaw size distribution modification is found beneficial in terms of ductility improvement at an optimized W/B ratio.展开更多
Large Deflection Buckling Spring-Piece (LDBSP) refers to the deformation of an end-fixed flat spring-piece under normal loadings. Plastic deformation usually appears in LDBSP.The static characteristic curve is very pa...Large Deflection Buckling Spring-Piece (LDBSP) refers to the deformation of an end-fixed flat spring-piece under normal loadings. Plastic deformation usually appears in LDBSP.The static characteristic curve is very particular, because within its linear deflection region, the spring constant can be designed to be any value from minus to plus. With its obvious advantages of large liner deflection range, low spring constant, etc., the LDBSP has now been extensively applied to the exciting device, low-frequency shock absorbers and so on. The static characteristic curve of LDBSP belongs to the nonlinear problem of an arch with varying section. Therefore, it is difficult to obtain it theoretically. The formulae for designing LDBSP have not been set up yet. In this study,the authors apply similarity theory to analyze the liner deflection range A and the spring constant K, and derive the relationship of similarity criterion, finally obtain a set of formulae for designing LDBSP by model test and the least square method, which can be applied in engineering design.Through the research, it is proved that it is unnecessary to keep geometrical similarity of spring-piece shape. This fact extends the application scope of the formulae. The proposed formulae for designing LDBSP thereby can be applied for any dimensions within the range allowed.展开更多
In the design of deflection coil, we have to determine those values of descriptive parameters of the deflection coil that will give us a required performance. In this paper, an artificial neural network is used in th...In the design of deflection coil, we have to determine those values of descriptive parameters of the deflection coil that will give us a required performance. In this paper, an artificial neural network is used in the design of deflection coil. It is shown that the artificial neural network is indeed possible to develop well-trained networks for designing a particular deflection coil.展开更多
It is shown that the deflection of star light passing by the Sun, which is allegedly explainable only by general relativity, can be understood quantitatively as a quasi-classical effect of light refraction in the vac...It is shown that the deflection of star light passing by the Sun, which is allegedly explainable only by general relativity, can be understood quantitatively as a quasi-classical effect of light refraction in the vacuum polarized by the Sun's gravitational field. The theory of the dielectric polarization of the vacuum proposed pre- viously is further developed for the corresponding effect of the polarization of the vacuum in a gravitational field. The resulting refractive index of the vacuum in the presence of a gravitational field gives for the deflection of light by the Sun an angle |0| = 1.77', which is in good agreement with the experimental observations and the result of general relativity. From the theory Presented, it can also be deduced that the velocity of a horizontal light beam at 1000 km above ground level of the Earth has a velocity deficit - c= 5.73 cm / s in comparison to the light velocity on the ground.展开更多
The motion characteristics of projectile during oblique penetration into concrete were studied using a three-dimensional meso-scale model.The finite element model validation and parameter chosen were conducted by comp...The motion characteristics of projectile during oblique penetration into concrete were studied using a three-dimensional meso-scale model.The finite element model validation and parameter chosen were conducted by comparing the experimental data,with computational efficiency enhanced through improved mesh refinement.Penetration simulations involving deformable projectiles at various incident angles analyzed the effects of aggregate volume fraction and particle size on ballistic trajectory and terminal deflection.Sensitivity analysis reveals a strong power-law relationship between aggregate content and the projectile's deflection angle.The increase in aggregate content will enhance the confinement effect,shorten the intrusion distance of the projectile,and lead to a decrease in the deflection angle of the projectile.The effect of aggregate particle size on the projectile deflection angle follows a Gaussian distribution.The maximum deflection angle occurs when the aggregate particle size is between 2.7 and 3.1 times the projectile diameter.An increase in particle size reduces the number of aggregate-mortar interfaces at the same aggregate volume fraction,leading to an enlargement of the damage zone in concrete,a decrease in the number of cracks,and an increase in crack length.These findings enhance the understanding of concrete penetration mechanisms and offers valuable insights for engineering structure protection.展开更多
Based on the vehicle track coupling dynamics theory, a new spatial dynamic numerical model of vehicle track subgrade coupling system was established considering the interaction among different structural layers in the...Based on the vehicle track coupling dynamics theory, a new spatial dynamic numerical model of vehicle track subgrade coupling system was established considering the interaction among different structural layers in the subgrade system. The dynamic responses of the coupled system were analyzed when the speed of train was 350 km/h and the transition was filled with graded broken stones mixed with 5% cement. The results indicate that the setting form of bridge-approach embankment section has little effect on the dynamic responses, thus designers can choose it on account of the practical circumstances. Because the location about 5 m from the bridge abutment has the greatest deformation, the stiffness within 0 5 m zone behind the abutment should be specially designed. The results of the study from vehicle track dynamics show that the maximum allowable track deflection angle should be 0.09% and the coefficient of subgrade reaction(K30) is greater than 190 MPa within the 0 5 m zone behind the abutment and greater than 150 MPa in other zones.展开更多
Several methods for evaluating the sublayer suspension beneath old pavement with falling weight deflectormeter(FWD), were summarized and the respective advantages and disadvantages were analyzed. Based on these method...Several methods for evaluating the sublayer suspension beneath old pavement with falling weight deflectormeter(FWD), were summarized and the respective advantages and disadvantages were analyzed. Based on these methods, the evaluation principles were improved and a new type of the neural network, functional-link neural network was proposed to evaluate the sublayer suspension with FWD test results. The concept of function link, learning method of functional-link neural network and the establishment process of neural network model were studied in detail. Based on the old pavement over-repairing engineering of Kaiping section, Guangdong Province in G325 National Highway, the application of functional-link neural network in evaluation of sublayer suspension beneath old pavement based on FWD test data on the spot was investigated. When learning rate is 0.1 and training cycles are 405, the functional-link network error is less than 0.000 1, while the optimum chosen 4-8-1 BP needs over 10 000 training cycles to reach the same accuracy with less precise evaluation results. Therefore, in contrast to common BP neural network,the functional-link neural network adopts single layer structure to learn and calculate, which simplifies the network, accelerates the convergence speed and improves the accuracy. Moreover the trained functional-link neural network can be (adopted) to directly evaluate the sublayer suspension based on FWD test data on the site. Engineering practice indicates that the functional-link neural model gains very excellent results and effectively guides the pavement over-repairing construction.展开更多
A plane strain finite element model was established to investigate the effect of friction between diaphragm wall and soil on braced excavation. The behavior of interface between diaphragm wall and soil was simulated w...A plane strain finite element model was established to investigate the effect of friction between diaphragm wall and soil on braced excavation. The behavior of interface between diaphragm wall and soil was simulated with the interface model of ABAQUS. Parametric studies were conducted with different diaphragm wall external friction angles δ. The results show that deflection of diaphragm wall and ground surface settlement decrease with the decrease of δ. However, the reduction effect on diaphragm wall deflection is the most significant at the depth where the maximum wall deflection occurs and can be neglected at the wall base. The ratio between wall deep inward component and wall cantilever component reaches its peak value 2.7 when δ=5°. The ratio of the maximum ground surface settlement to the maximum wall lateral deflection decreases at a reduced rate with the increase of δ. For excavation with braced diaphragm wall, the effect of friction between diaphragm and soil on the deflection of diaphragm wall and ground settlement, especially the distribution of ground surface settlement behind diaphragm, should be taken into account.展开更多
The calculation of residual settlement of bidirectional reinforced composite foundation, which is composed of geocell cushion over gravel piles, was studied. The geocell cushion was modeled as a thin flexible plate wi...The calculation of residual settlement of bidirectional reinforced composite foundation, which is composed of geocell cushion over gravel piles, was studied. The geocell cushion was modeled as a thin flexible plate with large deflection. Based on the Kirchhoff hypothesis, the governing differential equations and boundary conditions of the deformation of geocell cushion under working load were founded using von Karman method and solved by Galerkin method. On theses bases, the gravel piles and inter-pile soils were assumed as Winkler ground with variable spring stiffness so as to execute the approximate calculation of the residual settlement of the bidirectional reinforced composite foundation. The calculation method was verified by two laboratory experiments concerning settlement of embankments. One experiment was with just geocell cushion installed to treat the soft clay under embankments; another one was with both geocell cushion and gravel piles installed. The results show that the calculated settlement curve and the maximum settlement are closed to the observed ones.展开更多
Deflectable nose control is a new trajectory correction method.In this paper,the aerodynamic and trajectory characteristics of a typical mortar projectile with a deflectable nose are investigated with respect to its f...Deflectable nose control is a new trajectory correction method.In this paper,the aerodynamic and trajectory characteristics of a typical mortar projectile with a deflectable nose are investigated with respect to its flight conditions.Using the method of wind tunnel testing,the aerodynamic coefficients of four kinds of mortar models were measured under the conditions of different angles of attack from-10°to 10°and Mach numbers from 0.3 to 0.9.Based on the aerodynamic coefficients,the trajectory ranges at different nose deflection angles and times were calculated.Furthermore,a trajectory optimization was performed by reducing the static margin.The results and discussions show that the nose deflection provided limited lift,while the pitching moment varied significantly.The mortar obtained the extended flight range and trajectory correction ability with nose deflection.展开更多
The problem of distributed detection fusion using multiple sensors for remote underwater target detection is studied. Considering that multiple access channel (MAC) schemes are able to offer high efficiency in bandw...The problem of distributed detection fusion using multiple sensors for remote underwater target detection is studied. Considering that multiple access channel (MAC) schemes are able to offer high efficiency in bandwidth usage and consume less energy than the parallel access channel (PAC), the MAC scheme is introduced into the underwater target detection field. The model of underwater distributed detection fusion based on MAC schemes is established. A new method for detection fusion of MAC based on deflection coefficient maximization (DCM) and Neyman-Pearson (NP) rule is proposed. Under the power constraint of local sensors, this paper uses the DCM theory to derive the optimal weight coefficients and offsets. The closed-form expressions of detection probability and false alarm probability for fusion systems are obtained. The optimal detection performance of fusion systems is analyzed and deeply researched. Both the theory analysis and simulation experiments indicate that the proposed method could improve the detection performance and decrease the error probability effectively under power constraints of local sensors and low signal to noise ratio.展开更多
Tests were carried out on 8 self-compacting reinforced concrete(SCC) beams and 4 normal reinforced concrete beams. The effects of mode of consolidation,load level,reinforcing ratio and structural type on long term beh...Tests were carried out on 8 self-compacting reinforced concrete(SCC) beams and 4 normal reinforced concrete beams. The effects of mode of consolidation,load level,reinforcing ratio and structural type on long term behavior of SCC were investigated. Under the same environmental conditions,the shrinkage-time curve of self-compacting concrete beam is very similar to that of normal concrete beam. For both self-compacting reinforced concrete beams and normal reinforced concrete beams,the rate of shrinkage at early stages is higher,the shrinkage strain at 2 months is about 60% of the maximum value at one year. The shrinkage strain of self-compacting reinforced concrete beam after one year is about 450×10-6. Creep deflection of self-compacting reinforced concrete beam decreases as the tensile reinforcing ratio increases. The deflection creep coefficient of self-compacting reinforced concrete beam after one and a half year is about 1.6,which is very close to that of normal reinforced concrete beams cast with vibration. Extra cautions considering shrinkage and creep behavior are not needed for the use of SCC in engineering practices.展开更多
The laser beam used to establish a communication channel between satellite and ground segments has a small divergence angle and a tiny spot on the Earth's surface,which may lead to the fail of the system.So it'...The laser beam used to establish a communication channel between satellite and ground segments has a small divergence angle and a tiny spot on the Earth's surface,which may lead to the fail of the system.So it's important to study the deflection of laser beam by the Earth's atmosphere and find a way to calibrate this error.Both theoretical analysis and real data processing method are used to obtain the mathematical model for divergence angle of laser communication beam and its correction function.Then the model has been applied to the data,which was used to describe the atmosphere state by traditional ground segments to obtain the critical elevation angle.According to the results of calculation,our conclusion will be that the correction should be done when the critical elevation happens.展开更多
基金Project(51175442)supported by the National Natural Science Foundation of ChinaProject(QD2012A09)supported by Teachers’College Research Project,ChinaProject(14ZA0263)supported by Research Project of Sichuan Provincial Department of Education,China
文摘In practical application, it is very important to master the influence of structure parameters on the mid-span deflection quantificationally. For large-span and heavy-duty gantry cranes, the influence of the rigid leg and the soft leg on mid-span deflection has not been considered in the past. In the paper, the mathematical model is established for universal large-span and heavy-duty gantry cranes. The analytical solution for the mid-span deflection of gantry-frame structure girder is derived and obtained based on the variation principle by considering the coupling effect of the bending moments of girder and legs, the axial force and the secondary bending moments. The relation between the load and the deflection on the mid-span of the gantry-frame structure girder is known. Then, the experimental model is designed according to dimensional analysis method. And experiments were performed on the WEW-600 B type testing machine. Hackling experimental data, the regular of the load and deflection on the girder mid-span is obtained, namely, the deformation of the gantry-frame structure resists the external load to do work. The validity of the nonlinear analytical solution of the girder deflection is verified. Experimental results show that the analytical solution of the gantry-frame structure deflection has much higher calculation accuracy than previous calculation method. This work provides a theoretical basis for the design and inspection of gantry-frame structures.
基金This work was supported by the National Natural Science Foundation of China[grant numbers 11521062].
文摘A perforation model is developed to predict the attitude deflection in the oblique perforation of concrete targets by a rigid projectile,in which the inertial moment of the projectile is introduced,together with taking the attitude deflection during the shear plugging sub-stage into account,and the shape of the plug formed on the rear surface of target is also re-investigated.Moreover,a new classification of concrete targets is proposed based on the target thickness,with which the attitude deflections in different kinds of concrete targets are analyzed.It is found that the numerical results by using the new perforation model are in good agreement with the previous experimental data and simulated results.Furthermore,the variations of the attitude deflection with the initial conditions(the initial attitude angle and the initial impact velocity) are investigated.
文摘Despite appropriate design of girder under bending and shear,the deflection of long steel girders usually exceeds the allowable range,and therefore the structural designers encounter challenges in this regard.Considering significant features of the cables,namely,low weight,small cross section,and high tensile strength,they are used in this research so as to control the deflection of long girder bridges,rather than increasing their heights.In this study,theoretical relations are developed to calculate the increase in pre-tensioning force of V-shaped steel cables under external loading as well as the deflection of steel girder bridges with V-shaped cables and different support conditions.To verify the theoretical relations,the steel girder bridge is modeled in the finite element ABAQUS software with different support conditions without cable and with V-shaped cables.The obtained results show that the theoretical relations can appropriately predict the deflection of girder bridge with V-shaped cables and different support conditions.In this study,the effects of the distance from support on the deflection of mid span are studied in both simply supported and fixed supported girder bridge so as to obtain the appropriate distance from support causing the minimum deflection.
基金Project(114M246)supported by the Scientific and Technological Research Council of Turkey
文摘The multiple cracking and deflection hardening performance of polyvinyl alcohol fiber reinforced engineered cementitious composites(PVA-ECC)under four-point flexural loading have been investigated.Matrices with different binder combinations and W/B ratios(from 0.44 to 0.78)providing satisfactory PVA fiber dispersion were specially designed.Effect of pre-existing flaw size distribution modification on deflection hardening behavior was comparatively studied by adding 3 mm diameter polyethylene beads into the mixtures(6%by total volume).Natural flaw size distributions of composites without beads were determined by cross sectional analysis.The crack number and crack width distributions of specimens after flexural loading were characterized and the possible causes of changes in multiple cracking and deflection hardening behavior by flaw size distribution modification were discussed.Promising results from the view point of deflection hardening behavior were obtained from metakaolin incorporated and flaw size distribution modified PVA-ECCs prepared with W/B=0.53.The dual roles of W/B ratio and superplasticizer content on flaw size distribution,cracking potential and fiber-matrix bond behavior were evaluated.Flaw size distribution modification is found beneficial in terms of ductility improvement at an optimized W/B ratio.
文摘Large Deflection Buckling Spring-Piece (LDBSP) refers to the deformation of an end-fixed flat spring-piece under normal loadings. Plastic deformation usually appears in LDBSP.The static characteristic curve is very particular, because within its linear deflection region, the spring constant can be designed to be any value from minus to plus. With its obvious advantages of large liner deflection range, low spring constant, etc., the LDBSP has now been extensively applied to the exciting device, low-frequency shock absorbers and so on. The static characteristic curve of LDBSP belongs to the nonlinear problem of an arch with varying section. Therefore, it is difficult to obtain it theoretically. The formulae for designing LDBSP have not been set up yet. In this study,the authors apply similarity theory to analyze the liner deflection range A and the spring constant K, and derive the relationship of similarity criterion, finally obtain a set of formulae for designing LDBSP by model test and the least square method, which can be applied in engineering design.Through the research, it is proved that it is unnecessary to keep geometrical similarity of spring-piece shape. This fact extends the application scope of the formulae. The proposed formulae for designing LDBSP thereby can be applied for any dimensions within the range allowed.
文摘In the design of deflection coil, we have to determine those values of descriptive parameters of the deflection coil that will give us a required performance. In this paper, an artificial neural network is used in the design of deflection coil. It is shown that the artificial neural network is indeed possible to develop well-trained networks for designing a particular deflection coil.
文摘It is shown that the deflection of star light passing by the Sun, which is allegedly explainable only by general relativity, can be understood quantitatively as a quasi-classical effect of light refraction in the vacuum polarized by the Sun's gravitational field. The theory of the dielectric polarization of the vacuum proposed pre- viously is further developed for the corresponding effect of the polarization of the vacuum in a gravitational field. The resulting refractive index of the vacuum in the presence of a gravitational field gives for the deflection of light by the Sun an angle |0| = 1.77', which is in good agreement with the experimental observations and the result of general relativity. From the theory Presented, it can also be deduced that the velocity of a horizontal light beam at 1000 km above ground level of the Earth has a velocity deficit - c= 5.73 cm / s in comparison to the light velocity on the ground.
基金funded by the National Natural Science Foundation of China(Grant Nos.12472390 and 12102292)the special fund for Science and Technology Innovation Teams of Shanxi Province(Grant No.202204051002006)。
文摘The motion characteristics of projectile during oblique penetration into concrete were studied using a three-dimensional meso-scale model.The finite element model validation and parameter chosen were conducted by comparing the experimental data,with computational efficiency enhanced through improved mesh refinement.Penetration simulations involving deformable projectiles at various incident angles analyzed the effects of aggregate volume fraction and particle size on ballistic trajectory and terminal deflection.Sensitivity analysis reveals a strong power-law relationship between aggregate content and the projectile's deflection angle.The increase in aggregate content will enhance the confinement effect,shorten the intrusion distance of the projectile,and lead to a decrease in the deflection angle of the projectile.The effect of aggregate particle size on the projectile deflection angle follows a Gaussian distribution.The maximum deflection angle occurs when the aggregate particle size is between 2.7 and 3.1 times the projectile diameter.An increase in particle size reduces the number of aggregate-mortar interfaces at the same aggregate volume fraction,leading to an enlargement of the damage zone in concrete,a decrease in the number of cracks,and an increase in crack length.These findings enhance the understanding of concrete penetration mechanisms and offers valuable insights for engineering structure protection.
基金Project(41030742) supported by the National Natural Science Foundation of ChinaProject(2009G010-c) supported by the Technological Research and Development Programs of the Ministry of Railways,China
文摘Based on the vehicle track coupling dynamics theory, a new spatial dynamic numerical model of vehicle track subgrade coupling system was established considering the interaction among different structural layers in the subgrade system. The dynamic responses of the coupled system were analyzed when the speed of train was 350 km/h and the transition was filled with graded broken stones mixed with 5% cement. The results indicate that the setting form of bridge-approach embankment section has little effect on the dynamic responses, thus designers can choose it on account of the practical circumstances. Because the location about 5 m from the bridge abutment has the greatest deformation, the stiffness within 0 5 m zone behind the abutment should be specially designed. The results of the study from vehicle track dynamics show that the maximum allowable track deflection angle should be 0.09% and the coefficient of subgrade reaction(K30) is greater than 190 MPa within the 0 5 m zone behind the abutment and greater than 150 MPa in other zones.
文摘Several methods for evaluating the sublayer suspension beneath old pavement with falling weight deflectormeter(FWD), were summarized and the respective advantages and disadvantages were analyzed. Based on these methods, the evaluation principles were improved and a new type of the neural network, functional-link neural network was proposed to evaluate the sublayer suspension with FWD test results. The concept of function link, learning method of functional-link neural network and the establishment process of neural network model were studied in detail. Based on the old pavement over-repairing engineering of Kaiping section, Guangdong Province in G325 National Highway, the application of functional-link neural network in evaluation of sublayer suspension beneath old pavement based on FWD test data on the spot was investigated. When learning rate is 0.1 and training cycles are 405, the functional-link network error is less than 0.000 1, while the optimum chosen 4-8-1 BP needs over 10 000 training cycles to reach the same accuracy with less precise evaluation results. Therefore, in contrast to common BP neural network,the functional-link neural network adopts single layer structure to learn and calculate, which simplifies the network, accelerates the convergence speed and improves the accuracy. Moreover the trained functional-link neural network can be (adopted) to directly evaluate the sublayer suspension based on FWD test data on the site. Engineering practice indicates that the functional-link neural model gains very excellent results and effectively guides the pavement over-repairing construction.
基金Project (07FDZDSF01200) supported by Tianjin Science and Technology Innovation Special Funds
文摘A plane strain finite element model was established to investigate the effect of friction between diaphragm wall and soil on braced excavation. The behavior of interface between diaphragm wall and soil was simulated with the interface model of ABAQUS. Parametric studies were conducted with different diaphragm wall external friction angles δ. The results show that deflection of diaphragm wall and ground surface settlement decrease with the decrease of δ. However, the reduction effect on diaphragm wall deflection is the most significant at the depth where the maximum wall deflection occurs and can be neglected at the wall base. The ratio between wall deep inward component and wall cantilever component reaches its peak value 2.7 when δ=5°. The ratio of the maximum ground surface settlement to the maximum wall lateral deflection decreases at a reduced rate with the increase of δ. For excavation with braced diaphragm wall, the effect of friction between diaphragm and soil on the deflection of diaphragm wall and ground settlement, especially the distribution of ground surface settlement behind diaphragm, should be taken into account.
文摘The calculation of residual settlement of bidirectional reinforced composite foundation, which is composed of geocell cushion over gravel piles, was studied. The geocell cushion was modeled as a thin flexible plate with large deflection. Based on the Kirchhoff hypothesis, the governing differential equations and boundary conditions of the deformation of geocell cushion under working load were founded using von Karman method and solved by Galerkin method. On theses bases, the gravel piles and inter-pile soils were assumed as Winkler ground with variable spring stiffness so as to execute the approximate calculation of the residual settlement of the bidirectional reinforced composite foundation. The calculation method was verified by two laboratory experiments concerning settlement of embankments. One experiment was with just geocell cushion installed to treat the soft clay under embankments; another one was with both geocell cushion and gravel piles installed. The results show that the calculated settlement curve and the maximum settlement are closed to the observed ones.
文摘Deflectable nose control is a new trajectory correction method.In this paper,the aerodynamic and trajectory characteristics of a typical mortar projectile with a deflectable nose are investigated with respect to its flight conditions.Using the method of wind tunnel testing,the aerodynamic coefficients of four kinds of mortar models were measured under the conditions of different angles of attack from-10°to 10°and Mach numbers from 0.3 to 0.9.Based on the aerodynamic coefficients,the trajectory ranges at different nose deflection angles and times were calculated.Furthermore,a trajectory optimization was performed by reducing the static margin.The results and discussions show that the nose deflection provided limited lift,while the pitching moment varied significantly.The mortar obtained the extended flight range and trajectory correction ability with nose deflection.
基金supported by the National Natural Science Foundation of China (60972152)Northwestern Polytechnical University Foun dations for Fundamental Research (JC201027 JC20100223)
文摘The problem of distributed detection fusion using multiple sensors for remote underwater target detection is studied. Considering that multiple access channel (MAC) schemes are able to offer high efficiency in bandwidth usage and consume less energy than the parallel access channel (PAC), the MAC scheme is introduced into the underwater target detection field. The model of underwater distributed detection fusion based on MAC schemes is established. A new method for detection fusion of MAC based on deflection coefficient maximization (DCM) and Neyman-Pearson (NP) rule is proposed. Under the power constraint of local sensors, this paper uses the DCM theory to derive the optimal weight coefficients and offsets. The closed-form expressions of detection probability and false alarm probability for fusion systems are obtained. The optimal detection performance of fusion systems is analyzed and deeply researched. Both the theory analysis and simulation experiments indicate that the proposed method could improve the detection performance and decrease the error probability effectively under power constraints of local sensors and low signal to noise ratio.
基金Project(50278097) supported by the National Natural Science Foundation of China
文摘Tests were carried out on 8 self-compacting reinforced concrete(SCC) beams and 4 normal reinforced concrete beams. The effects of mode of consolidation,load level,reinforcing ratio and structural type on long term behavior of SCC were investigated. Under the same environmental conditions,the shrinkage-time curve of self-compacting concrete beam is very similar to that of normal concrete beam. For both self-compacting reinforced concrete beams and normal reinforced concrete beams,the rate of shrinkage at early stages is higher,the shrinkage strain at 2 months is about 60% of the maximum value at one year. The shrinkage strain of self-compacting reinforced concrete beam after one year is about 450×10-6. Creep deflection of self-compacting reinforced concrete beam decreases as the tensile reinforcing ratio increases. The deflection creep coefficient of self-compacting reinforced concrete beam after one and a half year is about 1.6,which is very close to that of normal reinforced concrete beams cast with vibration. Extra cautions considering shrinkage and creep behavior are not needed for the use of SCC in engineering practices.
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA04080201)。
文摘The laser beam used to establish a communication channel between satellite and ground segments has a small divergence angle and a tiny spot on the Earth's surface,which may lead to the fail of the system.So it's important to study the deflection of laser beam by the Earth's atmosphere and find a way to calibrate this error.Both theoretical analysis and real data processing method are used to obtain the mathematical model for divergence angle of laser communication beam and its correction function.Then the model has been applied to the data,which was used to describe the atmosphere state by traditional ground segments to obtain the critical elevation angle.According to the results of calculation,our conclusion will be that the correction should be done when the critical elevation happens.