提出一种(γ,l-p,k)-匿名模型,模型引入了信息熵作为计算缺损数据的属性距离,通过敏感属性度高低分为不同的敏感级别,并设置相应的权重ω值,同时让等价类元组的不同敏感级别个数满足阈值γ。接着根据模型设计了加权信息熵匿名算法(Weigh...提出一种(γ,l-p,k)-匿名模型,模型引入了信息熵作为计算缺损数据的属性距离,通过敏感属性度高低分为不同的敏感级别,并设置相应的权重ω值,同时让等价类元组的不同敏感级别个数满足阈值γ。接着根据模型设计了加权信息熵匿名算法(Weighted Information Entropy Anonymous Algorithm based on Defect-Sensitive Attributes,WISA^(*))对缺损型数据集进行匿名化。实验结果表明,该算法不仅可以减少等价类信息损失,同时提高了敏感属性的多样性,从而降低了数据隐私泄露风险且复杂度较低。展开更多
电力设备运维过程中积累了大量缺陷图像与文本数据,这些数据对指导电力设备故障诊断及维护决策具有重要意义。针对现有电力设备缺陷分类任务中数据形式单一、融合层次浅、数据质量差等问题,该文提出了一种基于改进注意力机制和对比学习...电力设备运维过程中积累了大量缺陷图像与文本数据,这些数据对指导电力设备故障诊断及维护决策具有重要意义。针对现有电力设备缺陷分类任务中数据形式单一、融合层次浅、数据质量差等问题,该文提出了一种基于改进注意力机制和对比学习的图文融合分类方法(image-text fusion classification method based on improved attention mechanism and contrastive learning,IAC-ITFusion)。首先,该方法设计了一种双循环跨模态注意力机制(dual-cycle cross-modal attention,DCCA),用于捕捉图文数据映射关系的同时整合特征信息。其次,基于对比学习的思想,提出了一种注意力引导损失函数,用于调控DCCA机制的学习方向,使其聚焦于正确的特征信息,实现图文数据特征的有效融合。最后,针对电力线、变电站设备缺陷图文融合分类任务进行实验验证,结果显示所提方法准确率分别达到98.48%和98.57%,证明了该方法在电力设备缺陷图文融合分类任务上的有效性,对于推动电力设备运维智能化发展具有重要意义。展开更多
非结构化道路的缺陷目标检测任务对道路交通安全具有重要意义,但检测所需的标注数据集相对有限。为了解决非结构化道路标注数据集缺乏以及现有模型对无标注数据学习能力不足的问题,提出一种MAM(Multi-Augmentation with Memory)半监督...非结构化道路的缺陷目标检测任务对道路交通安全具有重要意义,但检测所需的标注数据集相对有限。为了解决非结构化道路标注数据集缺乏以及现有模型对无标注数据学习能力不足的问题,提出一种MAM(Multi-Augmentation with Memory)半监督目标检测算法。首先,引入缓存机制存储无标注图像和带有伪标注图像的框回归位置信息,避免了后续匹配造成的计算资源浪费。其次,设计混合数据增强策略,将缓存的伪标签图像与无标签图像混合输入学生模型,以增强模型对新数据的泛化能力,并使图像的尺度分布更加均衡。MAM算法不受目标检测模型的限制,并且更好地保持了目标框的一致性,避免了计算一致性损失。实验结果表明,MAM算法相比其他全监督学习和半监督学习算法更具优越性,在自建的非结构化道路缺陷数据集Defect上,在标注比例为10%、20%和30%的场景下,MAM算法的均值平均精度(mAP)相比于Soft Teacher算法分别提升了6.8、11.1和6.0百分点,在自建的非结构化道路坑洼数据集Pothole上,在标注比例为15%和30%的场景下,MAM算法的mAP相比于Soft Teacher算法分别提升了5.8和4.3百分点。展开更多
准确检测变电站中的设备缺陷并及时进行处理是保证电力系统安全运行的重要措施.针对表计缺陷图像背景复杂、目标尺寸不一、外形差别大等问题,提出基于改进YOLOv5(you only look once的第5个版本)的变电站表计缺陷检测算法.为了提高泛化...准确检测变电站中的设备缺陷并及时进行处理是保证电力系统安全运行的重要措施.针对表计缺陷图像背景复杂、目标尺寸不一、外形差别大等问题,提出基于改进YOLOv5(you only look once的第5个版本)的变电站表计缺陷检测算法.为了提高泛化能力、解决训练过程中样本不平衡问题,利用旋转和改变图像亮度的方法进行数据增广.通过引入坐标注意力机制,在聚焦缺陷特征的同时,能突出缺陷特征的差异.为了使边界框回归更快速准确,将EDIOU loss(effective distance intersection over union loss)代替CIOU loos(complete intersection over union loss).实验结果表明:6种算法中,该文算法的准确度、召回率和mAP(mean average preciscion)均最高,分别达85.1%,86.6%,87.3%.因此,该文算法具有优越性.展开更多
当前电网数字化转型升级,电力设备智能运维技术快速发展,在运维过程中积累了大量包含电网重要信息的电力设备缺陷文本。由于文本数据标签稀疏,以及描述语言的模糊性、差异性等问题,电力文本中的运维信息难以被有效挖掘。文章提出了一种...当前电网数字化转型升级,电力设备智能运维技术快速发展,在运维过程中积累了大量包含电网重要信息的电力设备缺陷文本。由于文本数据标签稀疏,以及描述语言的模糊性、差异性等问题,电力文本中的运维信息难以被有效挖掘。文章提出了一种针对电力设备缺陷文本的数据增强方法。首先,使用缺陷文本数据集微调预训练模型ERNIE(enhanced representation through knowledge integration),应用多阶段知识掩码策略将电气领域专业知识集成到对缺陷文本的动态编码中;然后在流形假设的基础上基于降噪自动编码器架构设计破坏函数和重建函数,遵循基于信息价值的掩码单元选择策略构建破坏函数,基于微调过的ERNIE构建重建函数,在“破坏-重建”过程中获得位于原始数据流形范围内的增强样本;其次对增强数据集基于影响函数和多样性度量进行数据选择,过滤掉数据质量差和重复度高的增强样本;最后通过多层训练框架,将增强数据应用于各种缺陷文本挖掘任务。算例基于真实设备巡检、检修记录构建了电力设备缺陷文本等级分类任务。结果表明,所提出的算法对缺陷文本挖掘效果有较大提升,并且可以广泛灵活地应用在多种电力设备缺陷文本挖掘任务中。展开更多
文摘提出一种(γ,l-p,k)-匿名模型,模型引入了信息熵作为计算缺损数据的属性距离,通过敏感属性度高低分为不同的敏感级别,并设置相应的权重ω值,同时让等价类元组的不同敏感级别个数满足阈值γ。接着根据模型设计了加权信息熵匿名算法(Weighted Information Entropy Anonymous Algorithm based on Defect-Sensitive Attributes,WISA^(*))对缺损型数据集进行匿名化。实验结果表明,该算法不仅可以减少等价类信息损失,同时提高了敏感属性的多样性,从而降低了数据隐私泄露风险且复杂度较低。
文摘电力设备运维过程中积累了大量缺陷图像与文本数据,这些数据对指导电力设备故障诊断及维护决策具有重要意义。针对现有电力设备缺陷分类任务中数据形式单一、融合层次浅、数据质量差等问题,该文提出了一种基于改进注意力机制和对比学习的图文融合分类方法(image-text fusion classification method based on improved attention mechanism and contrastive learning,IAC-ITFusion)。首先,该方法设计了一种双循环跨模态注意力机制(dual-cycle cross-modal attention,DCCA),用于捕捉图文数据映射关系的同时整合特征信息。其次,基于对比学习的思想,提出了一种注意力引导损失函数,用于调控DCCA机制的学习方向,使其聚焦于正确的特征信息,实现图文数据特征的有效融合。最后,针对电力线、变电站设备缺陷图文融合分类任务进行实验验证,结果显示所提方法准确率分别达到98.48%和98.57%,证明了该方法在电力设备缺陷图文融合分类任务上的有效性,对于推动电力设备运维智能化发展具有重要意义。
文摘非结构化道路的缺陷目标检测任务对道路交通安全具有重要意义,但检测所需的标注数据集相对有限。为了解决非结构化道路标注数据集缺乏以及现有模型对无标注数据学习能力不足的问题,提出一种MAM(Multi-Augmentation with Memory)半监督目标检测算法。首先,引入缓存机制存储无标注图像和带有伪标注图像的框回归位置信息,避免了后续匹配造成的计算资源浪费。其次,设计混合数据增强策略,将缓存的伪标签图像与无标签图像混合输入学生模型,以增强模型对新数据的泛化能力,并使图像的尺度分布更加均衡。MAM算法不受目标检测模型的限制,并且更好地保持了目标框的一致性,避免了计算一致性损失。实验结果表明,MAM算法相比其他全监督学习和半监督学习算法更具优越性,在自建的非结构化道路缺陷数据集Defect上,在标注比例为10%、20%和30%的场景下,MAM算法的均值平均精度(mAP)相比于Soft Teacher算法分别提升了6.8、11.1和6.0百分点,在自建的非结构化道路坑洼数据集Pothole上,在标注比例为15%和30%的场景下,MAM算法的mAP相比于Soft Teacher算法分别提升了5.8和4.3百分点。
文摘准确检测变电站中的设备缺陷并及时进行处理是保证电力系统安全运行的重要措施.针对表计缺陷图像背景复杂、目标尺寸不一、外形差别大等问题,提出基于改进YOLOv5(you only look once的第5个版本)的变电站表计缺陷检测算法.为了提高泛化能力、解决训练过程中样本不平衡问题,利用旋转和改变图像亮度的方法进行数据增广.通过引入坐标注意力机制,在聚焦缺陷特征的同时,能突出缺陷特征的差异.为了使边界框回归更快速准确,将EDIOU loss(effective distance intersection over union loss)代替CIOU loos(complete intersection over union loss).实验结果表明:6种算法中,该文算法的准确度、召回率和mAP(mean average preciscion)均最高,分别达85.1%,86.6%,87.3%.因此,该文算法具有优越性.
文摘当前电网数字化转型升级,电力设备智能运维技术快速发展,在运维过程中积累了大量包含电网重要信息的电力设备缺陷文本。由于文本数据标签稀疏,以及描述语言的模糊性、差异性等问题,电力文本中的运维信息难以被有效挖掘。文章提出了一种针对电力设备缺陷文本的数据增强方法。首先,使用缺陷文本数据集微调预训练模型ERNIE(enhanced representation through knowledge integration),应用多阶段知识掩码策略将电气领域专业知识集成到对缺陷文本的动态编码中;然后在流形假设的基础上基于降噪自动编码器架构设计破坏函数和重建函数,遵循基于信息价值的掩码单元选择策略构建破坏函数,基于微调过的ERNIE构建重建函数,在“破坏-重建”过程中获得位于原始数据流形范围内的增强样本;其次对增强数据集基于影响函数和多样性度量进行数据选择,过滤掉数据质量差和重复度高的增强样本;最后通过多层训练框架,将增强数据应用于各种缺陷文本挖掘任务。算例基于真实设备巡检、检修记录构建了电力设备缺陷文本等级分类任务。结果表明,所提出的算法对缺陷文本挖掘效果有较大提升,并且可以广泛灵活地应用在多种电力设备缺陷文本挖掘任务中。