期刊文献+
共找到1,102篇文章
< 1 2 56 >
每页显示 20 50 100
基于改进DeeplabV3+算法的地铁轨行区识别
1
作者 刘嘉宁 赵才友 张银喜 《铁道建筑》 北大核心 2025年第2期139-145,共7页
为解决现有基于深度学习的算法在地铁轨道区域识别上目标分割不精确、计算和存储资源需求大、检测速度慢的问题,提出了一种基于改进DeeplabV3+算法的地铁轨道区域识别算法。该模型将主干网络替换为有较低的模型大小和计算复杂度的轻量... 为解决现有基于深度学习的算法在地铁轨道区域识别上目标分割不精确、计算和存储资源需求大、检测速度慢的问题,提出了一种基于改进DeeplabV3+算法的地铁轨道区域识别算法。该模型将主干网络替换为有较低的模型大小和计算复杂度的轻量级卷积神经网络MobileNetV2,引入注意力机制CBAM(Channel Attention Module)来提高网络对特征的感知能力,并改进ASPP(Atrous Spatial Pyramid Pooling)使其能编码多尺度信息。应用自制数据集验证本文方法的有效性,并与经典DeeplabV3+、U-net、MaskR-CNN算法进行对比分析。结果表明:本文算法精确率、准确率、召回率、平均交并比分别为94.57%、94.43%、93.49%、90.24%,训练时长6.5 h,单张图像预测时长51.78 ms,模型大小为23 MB,均优于其他三种算法。本文算法在提高对轨道区域图像分割性能的同时,增强了模型的训练和检测效率,具有运用于地铁轨道区域识别的可行性和实用性。 展开更多
关键词 地铁 轨道区域识别 深度学习 语义分割 deeplabv3+算法
在线阅读 下载PDF
基于YOLOv5和改进DeeplabV3+的青藏高原植被提取算法
2
作者 闫储淇 黄建强 《草业学报》 北大核心 2025年第1期41-54,共14页
青藏高原的植被覆盖度是生态研究和环境监测的重要指标。传统的植被覆盖度检测方法在地形简单且植被分布集中的区域效果较好,但在复杂地形下由于成本高、调查范围受限、耗时长等问题,导致植被提取精度受限。近年来,计算机视觉和深度学... 青藏高原的植被覆盖度是生态研究和环境监测的重要指标。传统的植被覆盖度检测方法在地形简单且植被分布集中的区域效果较好,但在复杂地形下由于成本高、调查范围受限、耗时长等问题,导致植被提取精度受限。近年来,计算机视觉和深度学习技术的飞速发展为青藏高原复杂地形下的植被精准提取开辟了新的可能性。本研究提出一种结合YOLOv5和改进DeeplabV3+的双阶段植被提取算法。算法引入基于YOLOv5的植被目标检测模型,以减少背景对第二阶段植被分割任务的干扰;设计新型的DeeplabV3+语义分割模型,以实现精准的植被分割提取。改进的模型引入了轻量级主干网络MobileNetV2、优化了ASPP模块膨胀卷积参数,并集成EMA和CloAttention注意力机制。在青藏高原无人机航拍数据集上的实验结果显示,本算法在交并比(IoU)和像素准确率(PA)上分别达到了90.40%和96.32%,显著超过现有技术,且大幅降低了模型参数。本算法在多种环境条件下均展示了高精度的植被提取能力,可以为青藏高原植被覆盖度的快速、精准测定提供有效的技术支持。 展开更多
关键词 青藏高原 植被提取 深度学习 YOLOv5 deeplabv3+
在线阅读 下载PDF
基于改进的DeepLabV3+网络的Sentinel-1影像水体提取
3
作者 赵兴旺 赵妍 +1 位作者 刘超 刘春阳 《测绘通报》 北大核心 2025年第3期66-70,共5页
为了提高雷达影像提取水体的精度,本文以2023年Sentinel-1系列影像为数据源,在DeepLabV3+网络模型的基础上优化主干网络,并融合SE通道注意力机制,提出了一种改进的深度学习网络模型SEDeepLabV3+,针对改进的模型进行了消融试验,并以7月3... 为了提高雷达影像提取水体的精度,本文以2023年Sentinel-1系列影像为数据源,在DeepLabV3+网络模型的基础上优化主干网络,并融合SE通道注意力机制,提出了一种改进的深度学习网络模型SEDeepLabV3+,针对改进的模型进行了消融试验,并以7月31日北京市昌平区水体提取为例,对该模型进行了验证。试验结果表明,使用改进后的SEDeepLabV3+方法提取水体时,平均交并比与像素准确率能够达到88.55%和93.49%,与DeepLabV3+、HRNet、U-Net相比,平均交并比分别提高了2.26%、2.31%和5.08%,平均像素准确率分别提高了0.76%、0.80%和3.07%,改进后的SEDeepLabV3+不仅具有更轻量级的网络结构,而且能够有效地提高水体提取精度和效率。 展开更多
关键词 deeplabv3+ 水体提取 SE通道注意力机制 Sentinel-1影像 语义分割
在线阅读 下载PDF
基于改进DeepLabv3的自然图像语义分割算法 被引量:3
4
作者 赵晓 王若男 +1 位作者 杨晨 李玥辰 《陕西科技大学学报》 北大核心 2024年第2期182-188,共7页
针对DeepLabv3模型对自然图像语义分割时存在的图像局部细节信息丢失导致的误分割和物体边缘分割不完整的问题,提出了一种改进DeepLabv3模型的自然图像语义分割网络,能够以更高的准确率实现自然图像的语义分割.首先,使用ResNet101作为... 针对DeepLabv3模型对自然图像语义分割时存在的图像局部细节信息丢失导致的误分割和物体边缘分割不完整的问题,提出了一种改进DeepLabv3模型的自然图像语义分割网络,能够以更高的准确率实现自然图像的语义分割.首先,使用ResNet101作为骨干网络进行特征提取,把ResNet101网络最后两层提取到的特征图输入到设计的ACMix多重融合模块(ACMix Multiple Fusion Module,AMFM)中,有效获取不同尺度的空间特征信息,将融合之后的结果作为空洞空间金字塔池化模块(Atrous Spatial Pyramid Pooling,ASPP)的输入.其次,添加辅助分支模块(Auxiliary Branch Module,ABM),将ResNet101网络第三层提取到的特征图输入到ABM中,有效提取更丰富的边缘特征信息.最后,将主分支和辅助分支的结果融合作为输出,融合后的输出不仅追踪到了不同尺度的空间特征信息,而且提取到了完整的边缘特征信息,从而使模型更有效地提高分割精度.PASCAL VOC 2012数据集的结果表明,改进后的模型相比于原模型分割精度提升了3.21%,与其它网络模型相比,也具有较好的分割精度. 展开更多
关键词 语义分割 deeplabv3 多尺度特征融合
在线阅读 下载PDF
基于改进Deeplabv3+算法的滚珠丝杠驱动表面点蚀缺陷检测 被引量:1
5
作者 郎朗 陈晓琴 +1 位作者 刘莎 周强 《计算机科学》 CSCD 北大核心 2024年第S01期588-593,共6页
针对滚珠丝杠驱动表面背景环境复杂、点蚀缺陷目标小因而难以检测的问题,提出改进的Deeplabv3+滚珠丝杠驱动表面缺陷分割算法。本算法采用Re2Net-50替换Deeplabv3+的主干网络,显著提升了对小尺寸缺陷目标的识别能力。此外,通过在主干网... 针对滚珠丝杠驱动表面背景环境复杂、点蚀缺陷目标小因而难以检测的问题,提出改进的Deeplabv3+滚珠丝杠驱动表面缺陷分割算法。本算法采用Re2Net-50替换Deeplabv3+的主干网络,显著提升了对小尺寸缺陷目标的识别能力。此外,通过在主干网络中融合特征金字塔网络FPN,能够加强多尺度信息的提取,从而增强了对缺陷目标的精确定位。最后,本研究在Deeplabv3+网络的ASPP模块之后引入了Coordinate Attention机制,能够增强模型对图像中空间和维度的关注,有效地捕获了图像中的长距离空间依赖关系。实验结果表明,与原始的Deeplabv3+相比,所提算法在平均交并比MIoU指标上提高了4.38%,准确率Accuracy提高了5.52%,F1-score提高了2.74%。同时,与其他经典的语义分割算法相比,所提算法也展现出了一定的优越性。 展开更多
关键词 滚珠丝杠驱动 缺陷检测 deeplabv3+ 多尺度特征 注意力机制
在线阅读 下载PDF
基于DeeplabV3+网络的轻量化语义分割算法 被引量:3
6
作者 张秀再 张昊 杨昌军 《科学技术与工程》 北大核心 2024年第24期10382-10393,共12页
针对传统语义分割模型参数量大、计算速度慢且效率不高等问题,改进一种基于DeeplabV3+网络的轻量化语义分割模型Faster-DeeplabV3+。Faster-DeeplabV3+模型采用轻量级MobilenetV2代替Xception作为主干特征提取网络,大幅减少参数量,提高... 针对传统语义分割模型参数量大、计算速度慢且效率不高等问题,改进一种基于DeeplabV3+网络的轻量化语义分割模型Faster-DeeplabV3+。Faster-DeeplabV3+模型采用轻量级MobilenetV2代替Xception作为主干特征提取网络,大幅减少参数量,提高计算速度;引入深度可分离卷积(deep separable convolution, DSC)与空洞空间金字塔(atrous spatia pyramid pooling, ASPP)中的膨胀卷积设计成新的深度可分离膨胀卷积(depthwise separable dilated convolution, DSD-Conv),即组成深度可分离空洞空间金字塔模块(DP-ASPP),扩大感受野的同时减少原本卷积参数量,提高运算速度;加入改进的双注意力机制模块分别对编码区生成的低级特征图和高级特征图进行处理,增强网络对不同维度特征信息提取的敏感性和准确性;融合使用交叉熵和Dice Loss两种损失函数,为模型提供更全面、更多样的优化。改进模型在PASCAL VOC 2012数据集上进行测试。实验结果表明:平均交并比由76.57%提升至79.07%,分割准确度由91.2%提升至94.3%。改进模型的网络参数量(params)减少了3.86×10~6,浮点计算量(GFLOPs)减少了117.98 G。因此,Faster-DeeplabV3+算法在大幅降低参数量、提高运算速度的同时保持较高语义分割效果。 展开更多
关键词 语义分割 deeplabv3+ 轻量化 深度可分离卷积(DSC) 空洞空间金字塔池化(ASPP)
在线阅读 下载PDF
基于改进双目ORB-SLAM3的特征匹配算法
7
作者 伞红军 冯金祥 +2 位作者 陈久朋 彭真 赵龙云 《农业机械学报》 北大核心 2025年第5期625-634,共10页
针对传统ORB算法在双目特征匹配阶段误匹配率高而导致无法满足高精度定位要求的问题,提出了一种基于改进双目ORB-SLAM3的特征匹配算法。在特征点匹配阶段引入最近邻匹配算法(FLANN),通过设定比率阈值筛选出更为精确的匹配对,在双目ORB-S... 针对传统ORB算法在双目特征匹配阶段误匹配率高而导致无法满足高精度定位要求的问题,提出了一种基于改进双目ORB-SLAM3的特征匹配算法。在特征点匹配阶段引入最近邻匹配算法(FLANN),通过设定比率阈值筛选出更为精确的匹配对,在双目ORB-SLAM3立体匹配中引入自适应加权SAD-Census算法,通过考虑像素之间的几何距离,重新计算SAD值并与Census算法相融合来提高特征匹配稳定性和精度,同时加入自适应的SAD窗口滑动范围进一步扩大搜索距离,进而筛选出正确的匹配来提高系统精度。在EuRoC数据集和真实室内场景中进行实验,结果表明与改进前ORB-SLAM3算法相比,在数据集下改进算法定位精度提高23.32%,真实环境中提高近50%,从而验证了改进算法可行性和有效性。 展开更多
关键词 改进双目ORB-SLAM3 特征匹配 最近邻匹配算法 自适应加权SAD-Census算法
在线阅读 下载PDF
融合边缘特征的DeepLabV3+光伏面板语义分割模型研究 被引量:1
8
作者 沈灵鑫 王银 +2 位作者 李杰 李茂环 李小松 《控制工程》 北大核心 2025年第4期707-719,共13页
对无人机采集的光伏面板图像进行准确的分割提取,是提升光伏组件故障检测精度的前提。针对光伏面板红外图像的分割问题,首先对语义分割网络DeepLabV3+的空洞卷积率进行优化并引入深度可分离膨胀卷积,使模型进一步捕获全局和上下文信息;... 对无人机采集的光伏面板图像进行准确的分割提取,是提升光伏组件故障检测精度的前提。针对光伏面板红外图像的分割问题,首先对语义分割网络DeepLabV3+的空洞卷积率进行优化并引入深度可分离膨胀卷积,使模型进一步捕获全局和上下文信息;然后,设计了基于坎尼边缘检测算法和线段检测算法的边缘特征提取模块,获得细化的光伏面板边缘作为分割网络的补充特征,并通过四通道融合网络和并行融合网络实现了光伏面板的精确分割。实验结果表明,2种融合网络对光伏面板红外图像的分割精度高于DeepLabV3+,并且对不同场景下的光伏面板红外图像均能实现准确分割。 展开更多
关键词 语义分割 deeplabv3+ 边缘特征 光伏面板
在线阅读 下载PDF
级联改进DexiNed和DeepLabv3+网络的坡耕地提取 被引量:1
9
作者 刘超兵 甘淑 +1 位作者 袁希平 尚华胜 《自然资源遥感》 北大核心 2025年第2期49-55,共7页
丘陵山地区域耕地细小狭窄、结构复杂且边界模糊,使得耕地信息难以迅速、准确地获取。针对上述问题,提出一种级联改进DexiNed和DeepLabv3+网络的坡耕地信息提取模型。首先,采用MobileNetv2替换原有的Xception模型作为DeepLabv3+模型主... 丘陵山地区域耕地细小狭窄、结构复杂且边界模糊,使得耕地信息难以迅速、准确地获取。针对上述问题,提出一种级联改进DexiNed和DeepLabv3+网络的坡耕地信息提取模型。首先,采用MobileNetv2替换原有的Xception模型作为DeepLabv3+模型主干网络,并提出一种联系较为紧密的低层次信息提取方法,将较低层次信息和较高层次信息初步融合来作为原低层次信息的输入;其次,将原DeepLabv3+模型空洞空间金字塔池化(atrous spatial pyramid pooling,ASPP)模块的空洞率值优化为空洞率值分别为2,4,8,16的空洞卷积操作;最后,采用级联边缘检测技术实现耕地地块边缘和语义特征的互联互通。该文以GF-2影像为数据源,云南禄丰恐龙谷为试验区进行耕地提取。实验结果表明,通过改进后的模型架构和算法,能更准确地识别耕地区域,提取结果与真实耕地标注的图像更为接近,漏提和误提区域减少,整体精度和稳定性提高。 展开更多
关键词 耕地信息提取 边缘检测 deeplabv3+ 丘陵山地
在线阅读 下载PDF
基于改进DeepLabV3+的钢桥锈蚀检测方法 被引量:1
10
作者 黄海新 贺朝 +2 位作者 程寿山 许瑞宁 张连振 《重庆交通大学学报(自然科学版)》 北大核心 2025年第2期18-24,60,共8页
锈蚀检测算法是钢桥管养从人工视觉向机器视觉转型的关键,更是智能化钢桥检测机器人构建的技术基础。面向钢桥智能检测机器人对锈蚀检测算法低能耗和高精度的实际需求,针对DeepLabV3+模型加以改进,采用MobileNetV2主干网络替换原模型中... 锈蚀检测算法是钢桥管养从人工视觉向机器视觉转型的关键,更是智能化钢桥检测机器人构建的技术基础。面向钢桥智能检测机器人对锈蚀检测算法低能耗和高精度的实际需求,针对DeepLabV3+模型加以改进,采用MobileNetV2主干网络替换原模型中的Xception主干网络,使模型轻量化以易适配移动端设备,优化ASPP模块中的空洞率以提高网络对不同尺寸锈蚀的提取效果,添加CBAM注意力机制增强模型对关键特征的感知和捕捉;将改进后的DeepLabV3+模型与原DeepLabV3+模型、PSPNet模型和U-Net模型进行了对比,同时开展了消融实验;最后,将改进模型搭载于视觉机器人上,并开展实地工程测试。结果表明:相比于其它模型,改进的DeepLabV3+模型对钢桥锈蚀图像的分割准确率平均提高了7.5%,平均交并比平均提高了14.7%,召回率平均提高了9.1%。 展开更多
关键词 桥梁工程 deeplabv3+ 钢桥锈蚀检测 卷积神经网络 图像分割
在线阅读 下载PDF
基于改进DeepLabv3+的遥感影像道路提取算法 被引量:2
11
作者 王谦 何朗 +1 位作者 王展青 黄坤 《计算机科学》 CSCD 北大核心 2024年第8期168-175,共8页
道路提取可以帮助人们更好地理解城市环境,是城市交通和城市规划等方面的重要部分,随着深度学习与计算机视觉的发展,利用基于深度学习的语义分割算法从遥感影像中提取道路的技术趋于成熟。针对现有的深度学习道路提取算法存在的提取速... 道路提取可以帮助人们更好地理解城市环境,是城市交通和城市规划等方面的重要部分,随着深度学习与计算机视觉的发展,利用基于深度学习的语义分割算法从遥感影像中提取道路的技术趋于成熟。针对现有的深度学习道路提取算法存在的提取速度慢和容易受背景环境因素干扰而产生漏分割、不连续等问题,提出了一种基于ECANet注意力机制和级联空洞空间金字塔池化模块的轻量化算法CE-DeepLabv3+。首先,将主干特征提取网络更换为轻量级的MobileNetv2,减少参数量,提高模型的执行速度;其次,通过增加空洞空间金字塔池化模块的卷积层进一步扩大感受野,再级联不同特征层来增强语义信息的复用性,从而加强对细节特征的提取能力;再次,加入ECANet注意力机制,抑制背景环境中的干扰因素,聚焦道路信息;最后,采用改进的损失函数进行训练,消除了道路与背景样本不均衡对模型性能产生的影响。实验结果表明,改进算法的性能优良,与原始DeepLabv3+算法相比,在分割效率、分割精度上有较大的提升。 展开更多
关键词 语义分割 遥感影像 道路提取 注意力机制 deeplabv3+ 级联空洞空间金字塔池化
在线阅读 下载PDF
改进DeepLabV3+的数控铣床误差控制方法
12
作者 潘卫华 唐智灵 李俊 《机械设计与制造》 北大核心 2025年第8期244-249,255,共7页
现有数控铣床误差控制方法多数采用PID控制方法,而PID参数的整定需要通过反复试验来实现,且易出现参数调整不当现象,导致控制效果不佳。对此,利用改进DeepLabV3+算法优化设计数控铣床误差控制方法。首先,分析数控铣床组成结构,确定数控... 现有数控铣床误差控制方法多数采用PID控制方法,而PID参数的整定需要通过反复试验来实现,且易出现参数调整不当现象,导致控制效果不佳。对此,利用改进DeepLabV3+算法优化设计数控铣床误差控制方法。首先,分析数控铣床组成结构,确定数控铣床传感器安装位置,获取数控铣床运行数据。然后,在改进DeepLabV3+算法支持下,提取数控铣床主轴旋转与刀具的移动轨迹特征。最后,采用特征匹配的方式辨识铣床的误差状态,生成包含误差控制量和控制方向的指令,通过控制指令的执行,实现数控铣床误差控制任务。通过性能测试实验得出结论:与传统控制方法相比,在优化设计方法控制下,数控铣床的剩余误差明显降低。 展开更多
关键词 改进deeplabv3+ 数控机床 铣床 工作误差 误差控制
在线阅读 下载PDF
基于改进DeepLabV3+的非结构化道路可行驶区域检测
13
作者 段小勇 何超 刘学渊 《中国农机化学报》 北大核心 2025年第2期271-278,共8页
为实现非结构化林间道路可行驶区域的快速准确识别,针对林间道路边界不明显、道路形状不规范以及道路覆盖等问题,提出一种基于改进DeepLabV3+的林地非结构化道路分割模型。使用MobileNetV3网络代替传统DeepLabV3+主干网络以实现轻量化设... 为实现非结构化林间道路可行驶区域的快速准确识别,针对林间道路边界不明显、道路形状不规范以及道路覆盖等问题,提出一种基于改进DeepLabV3+的林地非结构化道路分割模型。使用MobileNetV3网络代替传统DeepLabV3+主干网络以实现轻量化设计,使图像分割速度及实时性显著提升;在主干网络解码器部分引入CBAM注意力机制,通过对ASPP模块参数调整,增强对非结构化道路在边界区域的特征提取与识别;采用融合损失函数,提高模型收敛速率及准确度,避免模型在复杂环境下出现错误检测区域。结果表明,改进后的DeepLabV3+检测平均帧数提升26.69帧/s,较原模型检测速率提升约54%,检测准确率提升至91.26%,同时,在强光、逆光以及路面积水等多种情况下均未出现漏检、误检和边界分割不清晰等现象,为非结构化道路自动驾驶提供技术参考。 展开更多
关键词 非结构化道路 语义分割 deeplabv3+ 注意力机制 损失函数
在线阅读 下载PDF
基于轻量级DeepLabV3+网络的焊接熔池图像分割方法 被引量:2
14
作者 胡继涛 马晓锋 +2 位作者 赵荣丽 刘海生 王中任 《计算机集成制造系统》 北大核心 2025年第1期126-134,共9页
为了准确快速地提取焊接过程中的熔池图像,提出一种轻量级DeepLabV3+网络的焊接熔池图像分割方法。首先,将DeepLabV3+的主干网络由Xception替换为优化后的MobileNetV2网络以减少模型参数量。其次,引入坐标注意力(CA)机制,提高模型对熔... 为了准确快速地提取焊接过程中的熔池图像,提出一种轻量级DeepLabV3+网络的焊接熔池图像分割方法。首先,将DeepLabV3+的主干网络由Xception替换为优化后的MobileNetV2网络以减少模型参数量。其次,引入坐标注意力(CA)机制,提高模型对熔池图像的提取能力。最后,利用迁移学习的训练方法,解决熔池样本稀缺的问题,并提升模型的精度和泛化能力。实验结果表明,改进后的模型在熔池数据集下平均交并比(MIoU)为94.65%,平均像素精度(MPA)为96.67%,单张图片推理时间为11.09 ms,模型参数量为5.81 M。与SegNet、PSPNet、UNet和DeepLabV3+等经典网络相比,改进后算法的模型参数量小,单图推理时间较短,且保持较高的平均交并比,能够更好地平衡图像分割精度和实时性。 展开更多
关键词 语义分割 deeplabv3+ 轻量级 熔池
在线阅读 下载PDF
MDS-DeepLabV3+——一种轻量级的复杂山地耕地提取方法
15
作者 殷海倩 甘淑 +2 位作者 袁希平 朱智富 张家铮 《兰州大学学报(自然科学版)》 北大核心 2025年第3期341-349,356,共10页
针对复杂山地空间异质性显著、耕地信息破碎化严重、提取困难等问题,对DeepLabV3+模型进行改进,基于恐龙谷高分二号卫星影像,构建一种用于复杂山地耕地信息自动提取的MDS-DeepLabV3+模型.使用MobileNetV2作为特征提取器,引入其在ImageNe... 针对复杂山地空间异质性显著、耕地信息破碎化严重、提取困难等问题,对DeepLabV3+模型进行改进,基于恐龙谷高分二号卫星影像,构建一种用于复杂山地耕地信息自动提取的MDS-DeepLabV3+模型.使用MobileNetV2作为特征提取器,引入其在ImageNet数据集上的预训练权重,降低复杂度,加速模型拟合;提出密集连接的空间空洞金字塔池化模块与scSE注意力模块结合的DscASPP模块,获取多尺度图像特征,整合空间通道信息.采用CARAFE算子替代原始上采样方法,在较大的感受野范围内聚合上下文信息,实现更准确和高效的特征重建.结果表明,MDS-DeepLabV3+模型平均交并比DeepLabV3+提升6.5%,平均像素准确率增加4.08%,F_(1)上升4.04%,模型参数量仅有3.97 MB.在禄丰数据集上对各种耕地类型的提取效果均优于其他分割网络,有效降低耕地漏提率和误提率,提取效率及准确性较高. 展开更多
关键词 语义分割 高分二号卫星影像 MobileNetV2模型 scSE注意力模块 deeplabv3+模型
在线阅读 下载PDF
基于改进DeepLabV3+的云南省光伏板识别方法 被引量:1
16
作者 徐真 周仿荣 +4 位作者 高振宇 文刚 马御棠 朱鹏航 吴磊 《东华大学学报(自然科学版)》 北大核心 2025年第2期215-221,共7页
光伏板提取是山火遥感监测虚警库建设的重要部分,对于避免山火遥感监测误报、提升山火遥感监测运行效率等具有重要意义。云南省地处云贵高原,地表环境较为复杂,采用遥感技术提取光伏板面临较大挑战。为克服光伏板样本不均衡等难点,将Res... 光伏板提取是山火遥感监测虚警库建设的重要部分,对于避免山火遥感监测误报、提升山火遥感监测运行效率等具有重要意义。云南省地处云贵高原,地表环境较为复杂,采用遥感技术提取光伏板面临较大挑战。为克服光伏板样本不均衡等难点,将ResNet-50残差网络作为DeepLabV3+语义分割模型的骨干网络,在空洞空间金字塔池化(ASPP)模块后融入注意力机制以更有效地聚合特征的多尺度上下文信息。构建云南省光伏板提取模型,并进行精度评价。结果显示,利用改进的DeepLabV3+模型进行光伏板提取的精准率达97.95%,召回率达95.84%,交并比达93.73%,在各模型中表现最佳,能实现高精度的光伏板提取,利用该模型提取云南省光伏板面积共40.149 km^(2)。 展开更多
关键词 deeplabv3+ 光伏板 语义分割 深度学习
在线阅读 下载PDF
多层次特征融合的DeepLabv3+遥感图像道路提取
17
作者 袁芳 王中元 陆可 《激光杂志》 北大核心 2025年第7期93-100,共8页
针对遥感图像道路提取任务中传统DeepLabv3+模型参数量大、资源消耗多及易受环境干扰存在细节丢失问题,提出一种基于DeepLabv3+多层次特征融合的道路提取模型。首先,使用优化的MobileNetv2作为主干网络,减少参数量的同时输出四个层次的... 针对遥感图像道路提取任务中传统DeepLabv3+模型参数量大、资源消耗多及易受环境干扰存在细节丢失问题,提出一种基于DeepLabv3+多层次特征融合的道路提取模型。首先,使用优化的MobileNetv2作为主干网络,减少参数量的同时输出四个层次的特征参与编码和解码阶段。其次,利用注意力增强的空洞空间卷积池化金字塔,对输入特征进行多尺度的密集采样。接着,提出浅层特征增强模块,用于提升模型对浅层特征的利用和感知能力。最后,利用多注意力特征融合模块,增强深层次语义特征和浅层特征的融合。基于DeepGlobe道路数据集进行实验,结果表明本模型参数量仅为原模型的1/5,召回率、精度、F1和交并比分别是79.46%、81.82%、80.62%和67.53%。本模型整体效果优于其他模型,减少参数量的同时,有效降低道路细节丢失。 展开更多
关键词 遥感 道路提取 deeplabv3+ 多层次特征 注意力机制
在线阅读 下载PDF
基于L-DeepLabV3+的风机组件图像分割方法
18
作者 王先知 邬满 +1 位作者 王高才 周雨晨 《计算机工程与设计》 北大核心 2025年第7期2089-2098,共10页
为提高风机组件图像的分割准确度和速度,提出一种L-DeepLabV3+的高效语义分割模型。采用改进后的EfficientNetV2-S1作为骨干网络,引入双融合注意力机制和深度可分离空洞卷积改进空洞空间卷积金字塔池化(atrous spatial pyramid pooling,... 为提高风机组件图像的分割准确度和速度,提出一种L-DeepLabV3+的高效语义分割模型。采用改进后的EfficientNetV2-S1作为骨干网络,引入双融合注意力机制和深度可分离空洞卷积改进空洞空间卷积金字塔池化(atrous spatial pyramid pooling,ASPP)模块,提高图像特征提取的准确性。损失函数采用Dice+Focal,使得模型在训练过程中会更加专注于复杂样本。实验结果表明,L-DeepLabV3+模型总体分类的准确率(Ac)提高了8.08%,mIoU值提高了7.59%。对比主流的语义分割模型,L-DeepLabV3+模型的分割精度得到进一步提升。 展开更多
关键词 图像分割 语义分割 deeplabv3+ 注意力机制 EfficientNetV2网络 平均交并比 风机叶片
在线阅读 下载PDF
基于优化DeepLabv3+的智能化高速铁路安全区域划分算法研究
19
作者 王勇达 王硕禾 +3 位作者 朱钰 常宇健 蔡承才 赵瑞康 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2024年第1期20-29,共10页
针对目前电气化铁路沿线复杂背景下铁路安全区域划分均需采用实际固定标准件为参照物且区域划分范围小等问题,提出一种无需参照物的高速铁路安全区域划分算法.首先基于无人机所采集图像中的相关参数计算出相应的GSD(地面采样间距)参数,... 针对目前电气化铁路沿线复杂背景下铁路安全区域划分均需采用实际固定标准件为参照物且区域划分范围小等问题,提出一种无需参照物的高速铁路安全区域划分算法.首先基于无人机所采集图像中的相关参数计算出相应的GSD(地面采样间距)参数,然后利用加入ECA-Net模块的DeepLabv3+模型对图像中的轨道进行精确分割.通过边缘检测、开运算、概率霍夫变换等一系列图像处理操作,提取出构成轨道的关键像素点,并运用最小二乘法进行轨道拟合,得出轨道数学表达式.最后,结合数学算法和GSD参数以及轨道数学表达式,完成安全区域的划分.实验结果表明,所提算法测量精度高达90%以上,无需选取固定参照物,适应性强、鲁棒性高,具有较高的实用性和可靠性. 展开更多
关键词 无人机 地面采样间距 deeplabv3+ ECA-Net 安全区域
在线阅读 下载PDF
基于TD3算法的多智能体协作缓存策略
20
作者 曾建州 李泽平 张素勤 《计算机工程》 北大核心 2025年第2期365-374,共10页
为了降低移动边缘网络中的内容获取时延和传输开销,提出一种基于双延迟深度确定性策略梯度(TD3)的多智能体协作缓存策略(MACC)。首先构建多智能体边缘缓存模型,将多节点缓存替换问题建模为部分可观测马尔可夫决策过程(POMDP),把相邻节... 为了降低移动边缘网络中的内容获取时延和传输开销,提出一种基于双延迟深度确定性策略梯度(TD3)的多智能体协作缓存策略(MACC)。首先构建多智能体边缘缓存模型,将多节点缓存替换问题建模为部分可观测马尔可夫决策过程(POMDP),把相邻节点的缓存状态和内容请求信息融入到各节点的观察空间,提高智能体对环境的感知能力,并通过三次指数平滑法提取各节点内容请求的流行度特征,使得算法能够适应内容流行度变化,从而提高缓存命中率;然后联合本地与相邻节点的传输时延和开销来设计指导性奖励函数,引导智能体进行协作缓存,降低系统的缓存冗余和内容传输开销;最后结合Wolpertinger Architecture方法对TD3算法进行多智能体扩展,使每个边缘节点都能自适应地学习缓存策略,从而提高系统性能。实验结果表明,MACC算法中边缘节点牺牲了部分缓存空间来协助相邻节点缓存请求内容,从而提高缓存命中率,在同一数据集上与MAAC、DDPG、独立TD3算法相比,MACC算法的缓存命中率分别平均提高了8.50%、13.91%和29.21%,并能适应动态的边缘环境,实现较小的内容获取时延和传输开销。 展开更多
关键词 移动边缘网络 多智能体 协作缓存 深度强化学习 TD3算法
在线阅读 下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部