A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the ...A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the neutral network, the decision algorithm is derived and the whole coordinated decision system is simulated. Secondly an algorithm for missile-attacking area is described and its calculational result is obtained under initial conditions. Then the attacking of missile is realized by the proportion guidance. Finally, a multi-target attack system. The system includes airfight decision, estimation of missile attack area and calculation of missile attack procedure. A digital simulation demonstrates that the airfight decision algorithm is correct. The methods have important reference values for the study of fire control system of the fourth generation fighter.展开更多
In order to solve existing problems about the method of establishing traditional system structure of decision support system(DSS), O S chart is applied to describe object oriented system structure of general DSS, an...In order to solve existing problems about the method of establishing traditional system structure of decision support system(DSS), O S chart is applied to describe object oriented system structure of general DSS, and a new method of eight specific steps is proposed to establish object oriented system structure of DSS by using the method of O S chart, which is applied successfully to the development of the DSS for the energy system ecology engineering research of the Wangheqiu country. Supplying many scientific effective computing models, decision support ways and a lot of accurate reliable decision data, the DSS plays a critical part in helping engineering researchers to make correct decisions. Because the period for developing the DSS is relatively shorter, the new way improves the efficiency of establishing DSS greatly. It also makes the DSS of system structure more flexible and easy to expand.展开更多
BACKGROUND:Rapid and accurate identification of high-risk patients in the emergency departments(EDs)is crucial for optimizing resource allocation and improving patient outcomes.This study aimed to develop an early pre...BACKGROUND:Rapid and accurate identification of high-risk patients in the emergency departments(EDs)is crucial for optimizing resource allocation and improving patient outcomes.This study aimed to develop an early prediction model for identifying high-risk patients in EDs using initial vital sign measurements.METHODS:This retrospective cohort study analyzed initial vital signs from the Chinese Emergency Triage,Assessment,and Treatment(CETAT)database,which was collected between January 1^(st),2020,and June 25^(th),2023.The primary outcome was the identification of high-risk patients needing immediate treatment.Various machine learning methods,including a deep-learningbased multilayer perceptron(MLP)classifier were evaluated.Model performance was assessed using the area under the receiver operating characteristic curve(AUC-ROC).AUC-ROC values were reported for three scenarios:a default case,a scenario requiring sensitivity greater than 0.8(Scenario I),and a scenario requiring specificity greater than 0.8(Scenario II).SHAP values were calculated to determine the importance of each predictor within the MLP model.RESULTS:A total of 38,797 patients were analyzed,of whom 18.2%were identified as high-risk.Comparative analysis of the predictive models for high-risk patients showed AUC-ROC values ranging from 0.717 to 0.738,with the MLP model outperforming logistic regression(LR),Gaussian Naive Bayes(GNB),and the National Early Warning Score(NEWS).SHAP value analysis identified coma state,peripheral capillary oxygen saturation(SpO_(2)),and systolic blood pressure as the top three predictive factors in the MLP model,with coma state exerting the most contribution.CONCLUSION:Compared with other methods,the MLP model with initial vital signs demonstrated optimal prediction accuracy,highlighting its potential to enhance clinical decision-making in triage in the EDs.展开更多
Related to complexity, there is a wide diversity of concepts, ranging from ‘‘systemic" to ‘‘complex", implying a need for a unified terminology. Per different authors, the main drivers of complexity can ...Related to complexity, there is a wide diversity of concepts, ranging from ‘‘systemic" to ‘‘complex", implying a need for a unified terminology. Per different authors, the main drivers of complexity can be found in human behaviour and uncertainty. This complexity, structural or dynamic can be organizational, technological, or nested in their relationship. ISO international standard 31000:2009 definition of risk management ‘‘coordinated activities to direct and control an organization with regard to risk", when applied to economic sectors, industry, services, project, or activity, it requires the use of models or theories as guidelines. Therefore, as its basic elements comprehend human behaviour and/or uncertainty, risk management to be effective and adapted as much as possible to reality, must be operational within complex systems, as already demonstrated in different R&D environments. Risk management faces demanding challenges when approaching specific and endogenous needs, such as the mining sector. This paper presents a multivariable function analysis methodology approach based on complex system modelling and through real data corresponding to a risk management tool in the mining sector.展开更多
The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high co...The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high cost of communication and complex modeling.Meanwhile,the traditional numerical iterative solution cannot deal with uncertainty and solution efficiency,which is difficult to apply online.For the coordinated optimization problem of the electricity-gas-heat IES in this study,we constructed a model for the distributed IES with a dynamic distribution factor and transformed the centralized optimization problem into a distributed optimization problem in the multi-agent reinforcement learning environment using multi-agent deep deterministic policy gradient.Introducing the dynamic distribution factor allows the system to consider the impact of changes in real-time supply and demand on system optimization,dynamically coordinating different energy sources for complementary utilization and effectively improving the system economy.Compared with centralized optimization,the distributed model with multiple decision centers can achieve similar results while easing the pressure on system communication.The proposed method considers the dual uncertainty of renewable energy and load in the training.Compared with the traditional iterative solution method,it can better cope with uncertainty and realize real-time decision making of the system,which is conducive to the online application.Finally,we verify the effectiveness of the proposed method using an example of an IES coupled with three energy hub agents.展开更多
Forest ecosystems are our priceless natural resource and are a key component of the global carbon budget. Forest fires can be a hazard to the viability and sustainable management of forests with consequences for natur...Forest ecosystems are our priceless natural resource and are a key component of the global carbon budget. Forest fires can be a hazard to the viability and sustainable management of forests with consequences for natural and cultural environments, economies, and the life quality of local and regional populations. Thus, the selection of strategies to manage forest fires, while considering both functional and economic efficiency, is of primary importance. The use of decision support systems(DSSs) by managers of forest fires has rapidly increased. This has strengthened capacity to prevent and suppress forest fires while protecting human lives and property. DSSs are a tool that can benefit incident management and decision making and policy, especially for emergencies such as natural disasters. In this study we reviewed state-of-the-art DSSs that use: database management systems and mathematical/economic algorithms for spatial optimization of firefighting forces; forest fire simulators and satellite technology for immediate detection and prediction of evolution of forest fires; GIS platforms that incorporate several tools to manipulate, process and analyze geographic data and develop strategic and operational plans.展开更多
Fresh status updates are vital to the efficient operation of network monitoring and real-time control applications. In this paper, we consider a mobile edge computing(MEC)-assisted status update system, where smart de...Fresh status updates are vital to the efficient operation of network monitoring and real-time control applications. In this paper, we consider a mobile edge computing(MEC)-assisted status update system, where smart devices extract valuable status updates from sensed data to achieve timely awareness of the surroundings by exploiting computational resources at the device and edge server. To quantify the freshness of status updates obtained by executing computation tasks, we employ the concept of age of information(Ao I) to characterize the timeliness of status updates. To cope with the limited energy at devices, we investigate a joint task generation and computation offloading scheme under a given energy budget for minimizing the age of obtained status updates. The age minimization problem is modeled as a constrained Markov decision process(CMDP). To obtain the optimal policy, we derive the structural properties of the optimal deterministic policy and propose a lightweight structure-based status update algorithm in the case of known channel statistics. Moreover, we consider a more realistic scenario without prior knowledge of channel statistics, and propose a Q-learning-based status update algorithm to make online decisions. Simulation results show that the performance of our proposed algorithms is competitive when compared with existing schemes.展开更多
As location-based techniques and applications have become ubiquitous in emerging wireless networks, the verification of location information has become more important. In recent years, there has been an explosion of a...As location-based techniques and applications have become ubiquitous in emerging wireless networks, the verification of location information has become more important. In recent years, there has been an explosion of activity related to lo- cation-verification techniques in wireless networks. In particular, there has been a specific focus on intelligent transport systems because of the mission-critical nature of vehicle location verification. In this paper, we review recent research on wireless location verification related to vehicular networks. We focus on location verification systems that rely on for- mal mathematical classification frameworks and show how many systems are either partially or fully encompassed by such frameworks.展开更多
Stealth security has always been considered as an important guarantee for the vitality and combat effectiveness of submarines.In accordance with the stealth requirements of submarines performing stealth voyage tasks,t...Stealth security has always been considered as an important guarantee for the vitality and combat effectiveness of submarines.In accordance with the stealth requirements of submarines performing stealth voyage tasks,this paper proposes a stealth assistant decision system.Firstly,the submarine stealth posture is acquired.A fuzzy neural network inference engine based on improved simplified particle swarm optimization is designed.The auxiliary decision-making scheme for state control and maneuver avoidance of submarine and its equipment is automatically generated.Secondly,the simulation and deduction of the assistant decision-making scheme are realized by the calculation modules of sound source level,propagation loss,and stealth situation.The assistant decision-making scheme and simulation result provide decision support for the commander.Thirdly,the simulation experiment platform of the submarine stealth assistant decision system is constructed.The submarine stealth assistant decision system described in this paper can quickly and efficiently produce assistant decision-making schemes,including submarine and equipment control and maneuver avoidance.The scheme is in line with the combat experience and the results of the pre-model simulation experiments,whereas the simulation deduction evaluates the rationality and effectiveness of the selected scheme.The submarine stealth assistant decision system can adapt to a complex battlefield environment in addition to rapidly and accurately providing assistance in decision-making.展开更多
Background: Remote sensing-based mapping of forest Ecosystem Service(ES) indicators has become increasingly popular. The resulting maps may enable to spatially assess the provisioning potential of ESs and prioritize t...Background: Remote sensing-based mapping of forest Ecosystem Service(ES) indicators has become increasingly popular. The resulting maps may enable to spatially assess the provisioning potential of ESs and prioritize the land use in subsequent decision analyses. However, the mapping is often based on readily available data, such as land cover maps and other publicly available databases, and ignoring the related uncertainties.Methods: This study tested the potential to improve the robustness of the decisions by means of local model fitting and uncertainty analysis. The quality of forest land use prioritization was evaluated under two different decision support models: either using the developed models deterministically or in corporation with the uncertainties of the models.Results: Prediction models based on Airborne Laser Scanning(ALS) data explained the variation in proxies of the suitability of forest plots for maintaining biodiversity, producing timber, storing carbon, or providing recreational uses(berry picking and visual amenity) with RMSEs of 15%–30%, depending on the ES. The RMSEs of the ALS-based predictions were 47%–97%of those derived from forest resource maps with a similar resolution. Due to applying a similar field calibration step on both of the data sources, the difference can be attributed to the better ability of ALS to explain the variation in the ES proxies.Conclusions: Despite the different accuracies, proxy values predicted by both the data sources could be used for a pixel-based prioritization of land use at a resolution of 250 m~2, i.e., in a considerably more detailed scale than required by current operational forest management. The uncertainty analysis indicated that maps of the ES provisioning potential should be prepared separately based on expected and extreme outcomes of the ES proxy models to fully describe the production possibilities of the landscape under the uncertainties in the models.展开更多
An integrated CAD/CAPP/CAM system of tube manufacturing based on integration frame is presented. In this system, two kinds of data conventions describing tube shape are presented in tube CAD subsystem, the object-orie...An integrated CAD/CAPP/CAM system of tube manufacturing based on integration frame is presented. In this system, two kinds of data conventions describing tube shape are presented in tube CAD subsystem, the object-oriented concept and the goal-driven inference mechanism have been applied in the development of the knowledge-based CAPP subsystem and simulation of tube processing under tube bending simulation subsystem is performed based on the tube model's piecewise representation. A tube product case is considered to give the application of the integrated system, and the advantages of the system in the use of tube bending are revealed.展开更多
Scheduled maintenance and condition-based online monitoring are among the focal points of recent research to enhance nuclear plant safety.One of the most effective ways to monitor plant conditions is by implementing a...Scheduled maintenance and condition-based online monitoring are among the focal points of recent research to enhance nuclear plant safety.One of the most effective ways to monitor plant conditions is by implementing a full-scope,plant-wide fault diagnostic system.However,most of the proposed diagnostic techniques are perceived as unreliable by operators because they lack an explanation module,their implementation is complex,and their decision/inference path is unclear.Graphical formalism has been considered for fault diagnosis because of its clear decision and inference modules,and its ability to display the complex causal relationships between plant variables and reveal the propagation path used for fault localization in complex systems.However,in a graphbased approach,decision-making is slow because of rule explosion.In this paper,we present an enhanced signed directed graph that utilizes qualitative trend evaluation and a granular computing algorithm to improve the decision speed and increase the resolution of the graphical method.We integrate the attribute reduction capability of granular computing with the causal/fault propagation reasoning capability of the signed directed graph and comprehensive rules in a decision table to diagnose faults in a nuclear power plant.Qualitative trend analysis is used to solve the problems of fault diagnostic threshold selection and signed directed graph node state determination.The similarity reasoning and detection ability of the granular computing algorithm ensure a compact decision table and improve the decision result.The performance of the proposed enhanced system was evaluated on selected faults of the Chinese Fuqing 2 nuclear reactor.The proposed method offers improved diagnostic speed and efficient data processing.In addition,the result shows a considerable reduction in false positives,indicating that the method provides a reliable diagnostic system to support further intervention by operators.展开更多
Integration interval and decision threshold issues were investigated for improved transmitted reference pulse cluster (iTRPC-) ultra-wideband (UWB) systems. Our analysis shows that the bit error rate (BER) perfo...Integration interval and decision threshold issues were investigated for improved transmitted reference pulse cluster (iTRPC-) ultra-wideband (UWB) systems. Our analysis shows that the bit error rate (BER) performance of iTRPC-UWB systems can be significantly improved via integration interval determination (IID) and decision threshold optimization. For this purpose, two modifications can be made at the autocorrelation receiver as follows. Firstly, the liD processing is performed for autocorrelation operation to capture multi-path energy as much as possible. Secondly, adaptive decision threshold (ADT) instead of zero decision threshold (ZDT), is used as estimated optimal decision threshold for symbol detection. Performance of iTRPCUWB systems using liD and ADT was evaluated in realistic IEEE 802.15.4a UWB channel models and the simulation results demonstrated our theoretical analysis.展开更多
Attention is concentrated on how to perform the innovative design during the process of pumping unit conceptual design, and how to enhance design efficiency and inspire creativity. Aiming at the shortages of conceptua...Attention is concentrated on how to perform the innovative design during the process of pumping unit conceptual design, and how to enhance design efficiency and inspire creativity. Aiming at the shortages of conceptual design, introducing the theory of inventive problem solving (TRIZ) into the mechanical product design for producing innovative ideas, and using the advanced computer-aided technique, the intelligent decision support system (IDSS) based on TRIZ (TRIZ-IDSS) has been constructed. The construction method, system structure, conceptual production, decisionmaking and evaluation of the problem solving subsystem are discussed. The innovative conceptual design of pumping units indicates that the system can help the engineers open up a new space of thinking, overcome the thinking inertia, and put forward innovative design concepts. This system also can offer the scientific instructions for the innovative design of mechanical products.展开更多
Multiple objects decision is used widely in many complex fields. In this paper an idea is provided to construct a train diagram intelligent multiple objects decision support system (TDIMODSS). And the reference point ...Multiple objects decision is used widely in many complex fields. In this paper an idea is provided to construct a train diagram intelligent multiple objects decision support system (TDIMODSS). And the reference point method is used to solve the complicated and large scale problems of making and adjusting train schedule. This paper focuses on the principle and framework of the model base, knowledge base of train diagram. It is shown that the TDIMODSS can solve the problems and their uncertainty in making train diagram, and can combine the expert knowledge, experience and judgement of a decision maker into the system. In addition to that, a friendly working environment is also presented, which brings together the human judgement, the adaptability to environment and the computerised information.展开更多
Tourism is rapidly becoming a sustainable pathway toward economic prosperity for host countries and communities. Recent advances in information and communications technology, the smartphone, the Internet and Wi-Fi hav...Tourism is rapidly becoming a sustainable pathway toward economic prosperity for host countries and communities. Recent advances in information and communications technology, the smartphone, the Internet and Wi-Fi have given a boost to the tourism industry. The city bus tour (CBT) service is one of the most successful businesses in the tourism industry. However, there exists no smart decision support system determining the most efficient way to plan the itinerary of a CBT. In this research, we report on the ongoing development of a mobile application (app) and a website for tourists, hoteliers and travel agents to connect with city bus operators and book/purchase the best CBT both in terms of cost and time. Firstly, the CBT problem is formulated as an asymmetric sequential three-stage arc routing problem. All places of interest (PoI) and pickup/dropout points are identified with arcs of the network (instead of nodes), each of which can be visited at least once (instead of exactly once). Secondly, the resulting pure integer programming (IP) problem is solved using a leading optimization soft- ware known as General Algebraic Modeling System (GAMS). The GAMS code developed for this project returns: (1) the exact optimal solution identifying the footprints of the city bus relative to all the arcs forming the minimal cost network; (2) the augmenting paths corre- sponding to the pickup stage, the PoI visiting stage and the drop-off stage. Finally, we demonstrate the applicability of the mobile app/website via a pilot study in the city of Melbourne (Australia). All the computations relative to the initial tests show that the ability of the app to answer users' inquiries in a fraction of a minute.展开更多
Objective:To expound geographical information system (GIS) technology is a very important tool when it was employed to assist to present the distribution by time and place and the model of transmission of infectious d...Objective:To expound geographical information system (GIS) technology is a very important tool when it was employed to assist to present the distribution by time and place and the model of transmission of infectious disease. Methods: We illustrated the assistant decision-making support function of GIS with an example of the spatial decision support system for SARS controlling in Shaanxi province of China which was developed by us. Results: The spatial decision support system established by applying GIS technology fulfilled the needs of real-time collection and management and dissemination SARS information and of surveillance and analysis the epidemic situation of SARS. Conclusion: Occurrence and epidemic of diseases, implement prevention and intervention measures and collocation hygienic resources are all with the characteristic of the variation of time and space, therefore, GIS technology has become a powerful tool for identifying risk factors of diseases, providing clues of causation of diseases , evaluating the effects of intervention measures and drawing a health management plan.展开更多
The RMR system is still very much applied in rock mechanics engineering context. It is based on the evaluation of six weights to obtain a final rating. To obtain the final rating a considerable amount of information i...The RMR system is still very much applied in rock mechanics engineering context. It is based on the evaluation of six weights to obtain a final rating. To obtain the final rating a considerable amount of information is needed concerning the rock mass which can be difficult to obtain in some projects or project stages at least with accuracy. In 2007 an alternative classification scheme based on the RMR, the Hierarchical Rock Mass Rating(HRMR) was presented. The main feature of this system was the adaptation to the level of knowledge existent about the rock mass to obtain the classification of the rock mass since it followed a decision tree approach. However, the HRMR was only valid for hard rock granites with low fracturing degrees. In this work, the database was enlarged with approximately 40% more cases considering other types of granite rock masses including weathered granites and based on this increased database the system was updated. Granite formations existent in the north of Portugal including Porto city are predominantly granites. Some years ago a light rail infrastructure was built in the city of Porto and surrounding municipalities which involved considerable challenges due to the high heterogeneity levels of the granite formations and the difficulties involved in their geomechanical characterization. In this work it is intended to provide also a contribution to improve the characterization of these formations with special emphasis to the weathered horizons. A specific subsystem applicable to the weathered formations was developed. The results of the validation of these systems are presented and show acceptable performances in identifying the correct class using less information than with the RMR system.展开更多
Accounting for static phased-mission systems (PMS) and imperfect coverage (IPC), generalized and integrated algorithm (GPMS-CPR) implemented a synthesis of several approaches into a single methodology whose advantages...Accounting for static phased-mission systems (PMS) and imperfect coverage (IPC), generalized and integrated algorithm (GPMS-CPR) implemented a synthesis of several approaches into a single methodology whose advantages were in the low computational complexity, broad applicability, and easy implementation. The approach is extended into analysis of each phase in the whole mission. Based on Fussell-Vesely importance measure, a simple and efficient importance measure is presented to analyze component’s importance of phased-mission systems considering imperfect coverage.展开更多
文摘A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the neutral network, the decision algorithm is derived and the whole coordinated decision system is simulated. Secondly an algorithm for missile-attacking area is described and its calculational result is obtained under initial conditions. Then the attacking of missile is realized by the proportion guidance. Finally, a multi-target attack system. The system includes airfight decision, estimation of missile attack area and calculation of missile attack procedure. A digital simulation demonstrates that the airfight decision algorithm is correct. The methods have important reference values for the study of fire control system of the fourth generation fighter.
文摘In order to solve existing problems about the method of establishing traditional system structure of decision support system(DSS), O S chart is applied to describe object oriented system structure of general DSS, and a new method of eight specific steps is proposed to establish object oriented system structure of DSS by using the method of O S chart, which is applied successfully to the development of the DSS for the energy system ecology engineering research of the Wangheqiu country. Supplying many scientific effective computing models, decision support ways and a lot of accurate reliable decision data, the DSS plays a critical part in helping engineering researchers to make correct decisions. Because the period for developing the DSS is relatively shorter, the new way improves the efficiency of establishing DSS greatly. It also makes the DSS of system structure more flexible and easy to expand.
基金Applicable Funding Source University of Science and Technology of China(to YLL)National Natural Science Foundation of China(12126604)(to MPZ)+1 种基金R&D project of Pazhou Lab(Huangpu)(2023K0609)(to MPZ)Anhui Provincial Natural Science(grant number 2208085MH235)(to KJ)。
文摘BACKGROUND:Rapid and accurate identification of high-risk patients in the emergency departments(EDs)is crucial for optimizing resource allocation and improving patient outcomes.This study aimed to develop an early prediction model for identifying high-risk patients in EDs using initial vital sign measurements.METHODS:This retrospective cohort study analyzed initial vital signs from the Chinese Emergency Triage,Assessment,and Treatment(CETAT)database,which was collected between January 1^(st),2020,and June 25^(th),2023.The primary outcome was the identification of high-risk patients needing immediate treatment.Various machine learning methods,including a deep-learningbased multilayer perceptron(MLP)classifier were evaluated.Model performance was assessed using the area under the receiver operating characteristic curve(AUC-ROC).AUC-ROC values were reported for three scenarios:a default case,a scenario requiring sensitivity greater than 0.8(Scenario I),and a scenario requiring specificity greater than 0.8(Scenario II).SHAP values were calculated to determine the importance of each predictor within the MLP model.RESULTS:A total of 38,797 patients were analyzed,of whom 18.2%were identified as high-risk.Comparative analysis of the predictive models for high-risk patients showed AUC-ROC values ranging from 0.717 to 0.738,with the MLP model outperforming logistic regression(LR),Gaussian Naive Bayes(GNB),and the National Early Warning Score(NEWS).SHAP value analysis identified coma state,peripheral capillary oxygen saturation(SpO_(2)),and systolic blood pressure as the top three predictive factors in the MLP model,with coma state exerting the most contribution.CONCLUSION:Compared with other methods,the MLP model with initial vital signs demonstrated optimal prediction accuracy,highlighting its potential to enhance clinical decision-making in triage in the EDs.
文摘Related to complexity, there is a wide diversity of concepts, ranging from ‘‘systemic" to ‘‘complex", implying a need for a unified terminology. Per different authors, the main drivers of complexity can be found in human behaviour and uncertainty. This complexity, structural or dynamic can be organizational, technological, or nested in their relationship. ISO international standard 31000:2009 definition of risk management ‘‘coordinated activities to direct and control an organization with regard to risk", when applied to economic sectors, industry, services, project, or activity, it requires the use of models or theories as guidelines. Therefore, as its basic elements comprehend human behaviour and/or uncertainty, risk management to be effective and adapted as much as possible to reality, must be operational within complex systems, as already demonstrated in different R&D environments. Risk management faces demanding challenges when approaching specific and endogenous needs, such as the mining sector. This paper presents a multivariable function analysis methodology approach based on complex system modelling and through real data corresponding to a risk management tool in the mining sector.
基金supported by The National Key R&D Program of China(2020YFB0905900):Research on artificial intelligence application of power internet of things.
文摘The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high cost of communication and complex modeling.Meanwhile,the traditional numerical iterative solution cannot deal with uncertainty and solution efficiency,which is difficult to apply online.For the coordinated optimization problem of the electricity-gas-heat IES in this study,we constructed a model for the distributed IES with a dynamic distribution factor and transformed the centralized optimization problem into a distributed optimization problem in the multi-agent reinforcement learning environment using multi-agent deep deterministic policy gradient.Introducing the dynamic distribution factor allows the system to consider the impact of changes in real-time supply and demand on system optimization,dynamically coordinating different energy sources for complementary utilization and effectively improving the system economy.Compared with centralized optimization,the distributed model with multiple decision centers can achieve similar results while easing the pressure on system communication.The proposed method considers the dual uncertainty of renewable energy and load in the training.Compared with the traditional iterative solution method,it can better cope with uncertainty and realize real-time decision making of the system,which is conducive to the online application.Finally,we verify the effectiveness of the proposed method using an example of an IES coupled with three energy hub agents.
基金co-financed by the European Union(European Social Fund-ESF)and Greek national funds through the Operational Program‘‘Education and Lifelong Learning’’of the National Strategic Reference Framework(NSRF)-Research Funding Program:Thales.Investing in knowledge society through the European Social Fund
文摘Forest ecosystems are our priceless natural resource and are a key component of the global carbon budget. Forest fires can be a hazard to the viability and sustainable management of forests with consequences for natural and cultural environments, economies, and the life quality of local and regional populations. Thus, the selection of strategies to manage forest fires, while considering both functional and economic efficiency, is of primary importance. The use of decision support systems(DSSs) by managers of forest fires has rapidly increased. This has strengthened capacity to prevent and suppress forest fires while protecting human lives and property. DSSs are a tool that can benefit incident management and decision making and policy, especially for emergencies such as natural disasters. In this study we reviewed state-of-the-art DSSs that use: database management systems and mathematical/economic algorithms for spatial optimization of firefighting forces; forest fire simulators and satellite technology for immediate detection and prediction of evolution of forest fires; GIS platforms that incorporate several tools to manipulate, process and analyze geographic data and develop strategic and operational plans.
基金supported in part by National Science Foundation for Young Scientists of China Project No.042700349Beijing Natural Science Foundation under Grant 19L2033Key Area R&D Program of Guangdong Province with grant No.2018B030338001。
文摘Fresh status updates are vital to the efficient operation of network monitoring and real-time control applications. In this paper, we consider a mobile edge computing(MEC)-assisted status update system, where smart devices extract valuable status updates from sensed data to achieve timely awareness of the surroundings by exploiting computational resources at the device and edge server. To quantify the freshness of status updates obtained by executing computation tasks, we employ the concept of age of information(Ao I) to characterize the timeliness of status updates. To cope with the limited energy at devices, we investigate a joint task generation and computation offloading scheme under a given energy budget for minimizing the age of obtained status updates. The age minimization problem is modeled as a constrained Markov decision process(CMDP). To obtain the optimal policy, we derive the structural properties of the optimal deterministic policy and propose a lightweight structure-based status update algorithm in the case of known channel statistics. Moreover, we consider a more realistic scenario without prior knowledge of channel statistics, and propose a Q-learning-based status update algorithm to make online decisions. Simulation results show that the performance of our proposed algorithms is competitive when compared with existing schemes.
基金supported by the University of New South Wales and the Australian Research Council under grant No.DP120102607
文摘As location-based techniques and applications have become ubiquitous in emerging wireless networks, the verification of location information has become more important. In recent years, there has been an explosion of activity related to lo- cation-verification techniques in wireless networks. In particular, there has been a specific focus on intelligent transport systems because of the mission-critical nature of vehicle location verification. In this paper, we review recent research on wireless location verification related to vehicular networks. We focus on location verification systems that rely on for- mal mathematical classification frameworks and show how many systems are either partially or fully encompassed by such frameworks.
基金Funding National Natural Science Foundation of China(51709061,51779057).
文摘Stealth security has always been considered as an important guarantee for the vitality and combat effectiveness of submarines.In accordance with the stealth requirements of submarines performing stealth voyage tasks,this paper proposes a stealth assistant decision system.Firstly,the submarine stealth posture is acquired.A fuzzy neural network inference engine based on improved simplified particle swarm optimization is designed.The auxiliary decision-making scheme for state control and maneuver avoidance of submarine and its equipment is automatically generated.Secondly,the simulation and deduction of the assistant decision-making scheme are realized by the calculation modules of sound source level,propagation loss,and stealth situation.The assistant decision-making scheme and simulation result provide decision support for the commander.Thirdly,the simulation experiment platform of the submarine stealth assistant decision system is constructed.The submarine stealth assistant decision system described in this paper can quickly and efficiently produce assistant decision-making schemes,including submarine and equipment control and maneuver avoidance.The scheme is in line with the combat experience and the results of the pre-model simulation experiments,whereas the simulation deduction evaluates the rationality and effectiveness of the selected scheme.The submarine stealth assistant decision system can adapt to a complex battlefield environment in addition to rapidly and accurately providing assistance in decision-making.
基金originally supported by the Research Funds of University of Helsinki
文摘Background: Remote sensing-based mapping of forest Ecosystem Service(ES) indicators has become increasingly popular. The resulting maps may enable to spatially assess the provisioning potential of ESs and prioritize the land use in subsequent decision analyses. However, the mapping is often based on readily available data, such as land cover maps and other publicly available databases, and ignoring the related uncertainties.Methods: This study tested the potential to improve the robustness of the decisions by means of local model fitting and uncertainty analysis. The quality of forest land use prioritization was evaluated under two different decision support models: either using the developed models deterministically or in corporation with the uncertainties of the models.Results: Prediction models based on Airborne Laser Scanning(ALS) data explained the variation in proxies of the suitability of forest plots for maintaining biodiversity, producing timber, storing carbon, or providing recreational uses(berry picking and visual amenity) with RMSEs of 15%–30%, depending on the ES. The RMSEs of the ALS-based predictions were 47%–97%of those derived from forest resource maps with a similar resolution. Due to applying a similar field calibration step on both of the data sources, the difference can be attributed to the better ability of ALS to explain the variation in the ES proxies.Conclusions: Despite the different accuracies, proxy values predicted by both the data sources could be used for a pixel-based prioritization of land use at a resolution of 250 m~2, i.e., in a considerably more detailed scale than required by current operational forest management. The uncertainty analysis indicated that maps of the ES provisioning potential should be prepared separately based on expected and extreme outcomes of the ES proxy models to fully describe the production possibilities of the landscape under the uncertainties in the models.
基金Sponsored bythe Ministerial Level Research Foundation(T29483939)
文摘An integrated CAD/CAPP/CAM system of tube manufacturing based on integration frame is presented. In this system, two kinds of data conventions describing tube shape are presented in tube CAD subsystem, the object-oriented concept and the goal-driven inference mechanism have been applied in the development of the knowledge-based CAPP subsystem and simulation of tube processing under tube bending simulation subsystem is performed based on the tube model's piecewise representation. A tube product case is considered to give the application of the integrated system, and the advantages of the system in the use of tube bending are revealed.
基金supported by the project of State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment(No.KA2019.418)the Foundation of Science and Technology on Reactor System Design Technology Laboratory(HT-KFKT-14-2017003)+1 种基金the technical support project for Suzhou Nuclear Power Research Institute(SNPI)(No.029-GN-B-2018-C45-P.0.99-00003)the project of the Research Institute of Nuclear Power Operation(No.RIN180149-SCCG)
文摘Scheduled maintenance and condition-based online monitoring are among the focal points of recent research to enhance nuclear plant safety.One of the most effective ways to monitor plant conditions is by implementing a full-scope,plant-wide fault diagnostic system.However,most of the proposed diagnostic techniques are perceived as unreliable by operators because they lack an explanation module,their implementation is complex,and their decision/inference path is unclear.Graphical formalism has been considered for fault diagnosis because of its clear decision and inference modules,and its ability to display the complex causal relationships between plant variables and reveal the propagation path used for fault localization in complex systems.However,in a graphbased approach,decision-making is slow because of rule explosion.In this paper,we present an enhanced signed directed graph that utilizes qualitative trend evaluation and a granular computing algorithm to improve the decision speed and increase the resolution of the graphical method.We integrate the attribute reduction capability of granular computing with the causal/fault propagation reasoning capability of the signed directed graph and comprehensive rules in a decision table to diagnose faults in a nuclear power plant.Qualitative trend analysis is used to solve the problems of fault diagnostic threshold selection and signed directed graph node state determination.The similarity reasoning and detection ability of the granular computing algorithm ensure a compact decision table and improve the decision result.The performance of the proposed enhanced system was evaluated on selected faults of the Chinese Fuqing 2 nuclear reactor.The proposed method offers improved diagnostic speed and efficient data processing.In addition,the result shows a considerable reduction in false positives,indicating that the method provides a reliable diagnostic system to support further intervention by operators.
基金supported in part by the National Natural Science Foundation of China under Grant 61271262,61473047 and 61572083in part by Shaanxi Provincial Natural Science Foundation under Grant 2015JM6310in part by the Special Fund for Basic Scientific Research of Central Colleges,Chang’an University 310824152010 and 0009-2014G1241043
文摘Integration interval and decision threshold issues were investigated for improved transmitted reference pulse cluster (iTRPC-) ultra-wideband (UWB) systems. Our analysis shows that the bit error rate (BER) performance of iTRPC-UWB systems can be significantly improved via integration interval determination (IID) and decision threshold optimization. For this purpose, two modifications can be made at the autocorrelation receiver as follows. Firstly, the liD processing is performed for autocorrelation operation to capture multi-path energy as much as possible. Secondly, adaptive decision threshold (ADT) instead of zero decision threshold (ZDT), is used as estimated optimal decision threshold for symbol detection. Performance of iTRPCUWB systems using liD and ADT was evaluated in realistic IEEE 802.15.4a UWB channel models and the simulation results demonstrated our theoretical analysis.
文摘Attention is concentrated on how to perform the innovative design during the process of pumping unit conceptual design, and how to enhance design efficiency and inspire creativity. Aiming at the shortages of conceptual design, introducing the theory of inventive problem solving (TRIZ) into the mechanical product design for producing innovative ideas, and using the advanced computer-aided technique, the intelligent decision support system (IDSS) based on TRIZ (TRIZ-IDSS) has been constructed. The construction method, system structure, conceptual production, decisionmaking and evaluation of the problem solving subsystem are discussed. The innovative conceptual design of pumping units indicates that the system can help the engineers open up a new space of thinking, overcome the thinking inertia, and put forward innovative design concepts. This system also can offer the scientific instructions for the innovative design of mechanical products.
文摘Multiple objects decision is used widely in many complex fields. In this paper an idea is provided to construct a train diagram intelligent multiple objects decision support system (TDIMODSS). And the reference point method is used to solve the complicated and large scale problems of making and adjusting train schedule. This paper focuses on the principle and framework of the model base, knowledge base of train diagram. It is shown that the TDIMODSS can solve the problems and their uncertainty in making train diagram, and can combine the expert knowledge, experience and judgement of a decision maker into the system. In addition to that, a friendly working environment is also presented, which brings together the human judgement, the adaptability to environment and the computerised information.
文摘Tourism is rapidly becoming a sustainable pathway toward economic prosperity for host countries and communities. Recent advances in information and communications technology, the smartphone, the Internet and Wi-Fi have given a boost to the tourism industry. The city bus tour (CBT) service is one of the most successful businesses in the tourism industry. However, there exists no smart decision support system determining the most efficient way to plan the itinerary of a CBT. In this research, we report on the ongoing development of a mobile application (app) and a website for tourists, hoteliers and travel agents to connect with city bus operators and book/purchase the best CBT both in terms of cost and time. Firstly, the CBT problem is formulated as an asymmetric sequential three-stage arc routing problem. All places of interest (PoI) and pickup/dropout points are identified with arcs of the network (instead of nodes), each of which can be visited at least once (instead of exactly once). Secondly, the resulting pure integer programming (IP) problem is solved using a leading optimization soft- ware known as General Algebraic Modeling System (GAMS). The GAMS code developed for this project returns: (1) the exact optimal solution identifying the footprints of the city bus relative to all the arcs forming the minimal cost network; (2) the augmenting paths corre- sponding to the pickup stage, the PoI visiting stage and the drop-off stage. Finally, we demonstrate the applicability of the mobile app/website via a pilot study in the city of Melbourne (Australia). All the computations relative to the initial tests show that the ability of the app to answer users' inquiries in a fraction of a minute.
基金Supported by the Sci & Tech Development Foundation of Shaanxi province(2003K10G61)
文摘Objective:To expound geographical information system (GIS) technology is a very important tool when it was employed to assist to present the distribution by time and place and the model of transmission of infectious disease. Methods: We illustrated the assistant decision-making support function of GIS with an example of the spatial decision support system for SARS controlling in Shaanxi province of China which was developed by us. Results: The spatial decision support system established by applying GIS technology fulfilled the needs of real-time collection and management and dissemination SARS information and of surveillance and analysis the epidemic situation of SARS. Conclusion: Occurrence and epidemic of diseases, implement prevention and intervention measures and collocation hygienic resources are all with the characteristic of the variation of time and space, therefore, GIS technology has become a powerful tool for identifying risk factors of diseases, providing clues of causation of diseases , evaluating the effects of intervention measures and drawing a health management plan.
文摘The RMR system is still very much applied in rock mechanics engineering context. It is based on the evaluation of six weights to obtain a final rating. To obtain the final rating a considerable amount of information is needed concerning the rock mass which can be difficult to obtain in some projects or project stages at least with accuracy. In 2007 an alternative classification scheme based on the RMR, the Hierarchical Rock Mass Rating(HRMR) was presented. The main feature of this system was the adaptation to the level of knowledge existent about the rock mass to obtain the classification of the rock mass since it followed a decision tree approach. However, the HRMR was only valid for hard rock granites with low fracturing degrees. In this work, the database was enlarged with approximately 40% more cases considering other types of granite rock masses including weathered granites and based on this increased database the system was updated. Granite formations existent in the north of Portugal including Porto city are predominantly granites. Some years ago a light rail infrastructure was built in the city of Porto and surrounding municipalities which involved considerable challenges due to the high heterogeneity levels of the granite formations and the difficulties involved in their geomechanical characterization. In this work it is intended to provide also a contribution to improve the characterization of these formations with special emphasis to the weathered horizons. A specific subsystem applicable to the weathered formations was developed. The results of the validation of these systems are presented and show acceptable performances in identifying the correct class using less information than with the RMR system.
基金Supported by National Outstanding Youth Science Foundation of China (No.79725002)
文摘Accounting for static phased-mission systems (PMS) and imperfect coverage (IPC), generalized and integrated algorithm (GPMS-CPR) implemented a synthesis of several approaches into a single methodology whose advantages were in the low computational complexity, broad applicability, and easy implementation. The approach is extended into analysis of each phase in the whole mission. Based on Fussell-Vesely importance measure, a simple and efficient importance measure is presented to analyze component’s importance of phased-mission systems considering imperfect coverage.