期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Shear mechanical properties and debonding failure mechanisms of bolt-resin-rock anchoring system with anisotropic interfaces
1
作者 NIE Xin-xin YIN Qian +7 位作者 TAO Zhi-gang GUO Long-ji RIABOKON Evgenii ZHU De-fu XIE Liang-fu ZHA Wen-hua WANG Lin-feng REN Ya-jun 《Journal of Central South University》 2025年第7期2535-2552,共18页
This study investigates the shear mechanical responses and debonding failure mechanisms of anchoring systems comprising three anisotropic media and two anisotropic interfaces under controlled boundary conditions of co... This study investigates the shear mechanical responses and debonding failure mechanisms of anchoring systems comprising three anisotropic media and two anisotropic interfaces under controlled boundary conditions of constant normal load(F_(s)),constant normal stiffness(K),and shear rate(v).A systematic analysis of shear mechanical properties,the evolution of maximum principal strain field,and damage characteristics along shear failure surface is presented.Results from direct shear tests demonstrate that initial shear slip diminishes with increasing F_(s)and K,attributed to the normal constraint strengthening effect,while an increase in v enhances initial shear slip due to attenuated deformation coordination and stress transfer.As F_(s)increases from 7.5 to 120 kN,K from 0 to 12 MPa/mm,and v from 0.1 to 2 mm/min,the peak shear load increases by 210.32%and 80.16%with rising F_(s)and K,respectively,while decreases by 38.57%with increasing v.Correspondingly,the shear modulus exhibits,respectively,a 135.29%and 177.06%increase with rising F_(s)and K,and a 37.03%decrease with larger v.Initial shear dilation is identified as marking the formation of shear failure surface along anisotropic interfaces,resulting from the combined shear actions at the resin bolt interface,where resin undergoes shear by bolt surface protrusions,and the resin-rock interface,where mutual shear occurs between resin and rock.With increasing F_(s)and K and decreasing v,the location of the shear failure surface shifts from the resin-rock interface to the resin-bolt interface,accompanied by a transition in failure mode from tensile rupture of resin to shear off at the resin surface. 展开更多
关键词 anchoring system anisotropic interfaces shear mechanical properties strain field evolution debonding failure
在线阅读 下载PDF
Numerical Simulation of Particle/Matrix Interface Failure in Composite Propellant 被引量:7
2
作者 常武军 鞠玉涛 +2 位作者 韩波 胡少青 王政时 《Defence Technology(防务技术)》 SCIE EI CAS 2012年第3期146-153,共8页
Interface debonding between particle and matrix in composite propellant influences its macroscopic mechanical properties greatly. For this, the laws of interface cohesive damage and failure were analyzed. Then, its mi... Interface debonding between particle and matrix in composite propellant influences its macroscopic mechanical properties greatly. For this, the laws of interface cohesive damage and failure were analyzed. Then, its microscopic computational model was established. The interface mechanical response was modeled by the bilinear cohesive zone model. The effects of interface properties and particle sizes on the macroscopic mechanical behavior were investigated. Numerical simulation of debonding damage evolution of composite propellant under finite deformation was carried out. The debonding damage nucleation, propagation mechanism and non-uniform distribution of microscopic stress-strain fields were discussed. The results show that the finite element simulation method based on microstructure model can effectively predict the trend of macroscopic mechanical behavior and particle/matrix debonding evolution process. It can be used for damage simulation and failure assessment of composite propellants. 展开更多
关键词 propulsion system of aviation and aerospace interface debonding cohesive zone model composite propellant cohesive element damage evolution
在线阅读 下载PDF
Effect of neutral polymeric bonding agent on tensile mechanical properties and damage evolution of NEPE propellant 被引量:1
3
作者 M.Wubuliaisan Yanqing Wu +3 位作者 Xiao Hou Kun Yang Hongzheng Duan Xinmei Yin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期357-367,共11页
Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of ne... Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of new generations of the NEPE propellant with better mechanical properties. Therefore,understanding the effects of NPBA on the deformation and damage evolution of the NEPE propellant is fundamental to material design and applications. This paper studies the uniaxial tensile and stress relaxation responses of the NEPE propellant with different amounts of NPBA. The damage evolution in terms of interface debonding is further investigated using a cohesive-zone model(CZM). Experimental results show that the initial modulus and strength of the NEPE propellant increase with the increasing amount of NPBA while the elongation decreases. Meanwhile, the relaxation rate slows down and a higher long-term equilibrium modulus is reached. Experimental and numerical analyses indicate that interface debonding and crack propagation along filler-matrix interface are the dominant damage mechanism for the samples with a low amount of NPBA, while damage localization and crack advancement through the matrix are predominant for the ones with a high amount of NPBA. Finally, crosslinking density tests and simulation results also show that the effect of the bonding agent is interfacial rather than due to the overall crosslinking density change of the binder. 展开更多
关键词 Solid propellant Bonding agent Mechanical properties Damage evolution Cohesive-zone model Interface debonding
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部