The degradation process of lithium-ion batteries is intricately linked to their entire lifecycle as power sources and energy storage devices,encompassing aspects such as performance delivery and cycling utilization.Co...The degradation process of lithium-ion batteries is intricately linked to their entire lifecycle as power sources and energy storage devices,encompassing aspects such as performance delivery and cycling utilization.Consequently,the accurate and expedient estimation or prediction of the aging state of lithium-ion batteries has garnered extensive attention.Nonetheless,prevailing research predominantly concentrates on either aging estimation or prediction,neglecting the dynamic fusion of both facets.This paper proposes a hybrid model for capacity aging estimation and prediction based on deep learning,wherein salient features highly pertinent to aging are extracted from charge and discharge relaxation processes.By amalgamating historical capacity decay data,the model dynamically furnishes estimations of the present capacity and forecasts of future capacity for lithium-ion batteries.Our approach is validated against a novel dataset involving charge and discharge cycles at varying rates.Specifically,under a charging condition of 0.25 C,a mean absolute percentage error(MAPE)of 0.29%is achieved.This outcome underscores the model's adeptness in harnessing relaxation processes commonly encountered in the real world and synergizing with historical capacity records within battery management systems(BMS),thereby affording estimations and prognostications of capacity decline with heightened precision.展开更多
This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with u...This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with uncertainties and observation noise.The attack-defense engagement scenario is modeled as a partially observable Markov decision process(POMDP).Given the benefits of recurrent neural networks(RNNs)in processing sequence information,an RNN layer is incorporated into the agent’s policy network to alleviate the bottleneck of traditional deep reinforcement learning methods while dealing with POMDPs.The measurements from the interceptor’s seeker during each guidance cycle are combined into one sequence as the input to the policy network since the detection frequency of an interceptor is usually higher than its guidance frequency.During training,the hidden states of the RNN layer in the policy network are recorded to overcome the partially observable problem that this RNN layer causes inside the agent.The training curves show that the proposed RRTD3 successfully enhances data efficiency,training speed,and training stability.The test results confirm the advantages of the RRTD3-based guidance laws over some conventional guidance laws.展开更多
The problem of passive detection discussed in this paper involves searching and locating an aerial emitter by dualaircraft using passive radars. In order to improve the detection probability and accuracy, a fuzzy Q le...The problem of passive detection discussed in this paper involves searching and locating an aerial emitter by dualaircraft using passive radars. In order to improve the detection probability and accuracy, a fuzzy Q learning algorithrn for dual-aircraft flight path planning is proposed. The passive detection task model of the dual-aircraft is set up based on the partition of the target active radar's radiation area. The problem is formulated as a Markov decision process (MDP) by using the fuzzy theory to make a generalization of the state space and defining the transition functions, action space and reward function properly. Details of the path planning algorithm are presented. Simulation results indicate that the algorithm can provide adaptive strategies for dual-aircraft to control their flight paths to detect a non-maneuvering or maneu- vering target.展开更多
This paper investigates the guidance method based on reinforcement learning(RL)for the coplanar orbital interception in a continuous low-thrust scenario.The problem is formulated into a Markov decision process(MDP)mod...This paper investigates the guidance method based on reinforcement learning(RL)for the coplanar orbital interception in a continuous low-thrust scenario.The problem is formulated into a Markov decision process(MDP)model,then a welldesigned RL algorithm,experience based deep deterministic policy gradient(EBDDPG),is proposed to solve it.By taking the advantage of prior information generated through the optimal control model,the proposed algorithm not only resolves the convergence problem of the common RL algorithm,but also successfully trains an efficient deep neural network(DNN)controller for the chaser spacecraft to generate the control sequence.Numerical simulation results show that the proposed algorithm is feasible and the trained DNN controller significantly improves the efficiency over traditional optimization methods by roughly two orders of magnitude.展开更多
In this paper, a reinforcement learning-based multibattery energy storage system(MBESS) scheduling policy is proposed to minimize the consumers ’ electricity cost. The MBESS scheduling problem is modeled as a Markov ...In this paper, a reinforcement learning-based multibattery energy storage system(MBESS) scheduling policy is proposed to minimize the consumers ’ electricity cost. The MBESS scheduling problem is modeled as a Markov decision process(MDP) with unknown transition probability. However, the optimal value function is time-dependent and difficult to obtain because of the periodicity of the electricity price and residential load. Therefore, a series of time-independent action-value functions are proposed to describe every period of a day. To approximate every action-value function, a corresponding critic network is established, which is cascaded with other critic networks according to the time sequence. Then, the continuous management strategy is obtained from the related action network. Moreover, a two-stage learning protocol including offline and online learning stages is provided for detailed implementation in real-time battery management. Numerical experimental examples are given to demonstrate the effectiveness of the developed algorithm.展开更多
In this paper we review the recent advances in three sub-areas of iterative learning control (ILC): 1) linear ILC for linear processes, 2) linear ILC for nonlinear processes which are global Lipschitz continuous (GLC)...In this paper we review the recent advances in three sub-areas of iterative learning control (ILC): 1) linear ILC for linear processes, 2) linear ILC for nonlinear processes which are global Lipschitz continuous (GLC), and 3) nonlinear ILC for general nonlinear processes. For linear processes, we focus on several basic configurations of linear ILC. For nonlinear processes with linear ILC, we concentrate on the design and transient analysis which were overlooked and missing for a long period. For general classes of nonlinear processes, we demonstrate nonlinear ILC methods based on Lyapunov theory, which is evolving into a new control paradigm.展开更多
With the warming up and continuous development of machine learning,especially deep learning,the research on visual question answering field has made significant progress,with important theoretical research significanc...With the warming up and continuous development of machine learning,especially deep learning,the research on visual question answering field has made significant progress,with important theoretical research significance and practical application value.Therefore,it is necessary to summarize the current research and provide some reference for researchers in this field.This article conducted a detailed and in-depth analysis and summarized of relevant research and typical methods of visual question answering field.First,relevant background knowledge about VQA(Visual Question Answering)was introduced.Secondly,the issues and challenges of visual question answering were discussed,and at the same time,some promising discussion on the particular methodologies was given.Thirdly,the key sub-problems affecting visual question answering were summarized and analyzed.Then,the current commonly used data sets and evaluation indicators were summarized.Next,in view of the popular algorithms and models in VQA research,comparison of the algorithms and models was summarized and listed.Finally,the future development trend and conclusion of visual question answering were prospected.展开更多
Experimentation data of perspex glass sheet cutting, using CO2 laser, with missing values were modelled with semi-supervised artificial neural networks. Factorial design of experiment was selected for the verification...Experimentation data of perspex glass sheet cutting, using CO2 laser, with missing values were modelled with semi-supervised artificial neural networks. Factorial design of experiment was selected for the verification of orthogonal array based model prediction. It shows improvement in modelling of edge quality and kerf width by applying semi-supervised learning algorithm, based on novel error assessment on simulations. The results are expected to depict better prediction on average by utilizing the systematic randomized techniques to initialize the neural network weights and increase the number of initialization. Missing values handling is difficult with statistical tools and supervised learning techniques; on the other hand, semi-supervised learning generates better results with the smallest datasets even with missing values.展开更多
文摘The degradation process of lithium-ion batteries is intricately linked to their entire lifecycle as power sources and energy storage devices,encompassing aspects such as performance delivery and cycling utilization.Consequently,the accurate and expedient estimation or prediction of the aging state of lithium-ion batteries has garnered extensive attention.Nonetheless,prevailing research predominantly concentrates on either aging estimation or prediction,neglecting the dynamic fusion of both facets.This paper proposes a hybrid model for capacity aging estimation and prediction based on deep learning,wherein salient features highly pertinent to aging are extracted from charge and discharge relaxation processes.By amalgamating historical capacity decay data,the model dynamically furnishes estimations of the present capacity and forecasts of future capacity for lithium-ion batteries.Our approach is validated against a novel dataset involving charge and discharge cycles at varying rates.Specifically,under a charging condition of 0.25 C,a mean absolute percentage error(MAPE)of 0.29%is achieved.This outcome underscores the model's adeptness in harnessing relaxation processes commonly encountered in the real world and synergizing with historical capacity records within battery management systems(BMS),thereby affording estimations and prognostications of capacity decline with heightened precision.
基金supported by the National Natural Science Foundation of China(Grant No.12072090)。
文摘This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with uncertainties and observation noise.The attack-defense engagement scenario is modeled as a partially observable Markov decision process(POMDP).Given the benefits of recurrent neural networks(RNNs)in processing sequence information,an RNN layer is incorporated into the agent’s policy network to alleviate the bottleneck of traditional deep reinforcement learning methods while dealing with POMDPs.The measurements from the interceptor’s seeker during each guidance cycle are combined into one sequence as the input to the policy network since the detection frequency of an interceptor is usually higher than its guidance frequency.During training,the hidden states of the RNN layer in the policy network are recorded to overcome the partially observable problem that this RNN layer causes inside the agent.The training curves show that the proposed RRTD3 successfully enhances data efficiency,training speed,and training stability.The test results confirm the advantages of the RRTD3-based guidance laws over some conventional guidance laws.
基金supported by the National Natural Science Foundation of China(60874040)
文摘The problem of passive detection discussed in this paper involves searching and locating an aerial emitter by dualaircraft using passive radars. In order to improve the detection probability and accuracy, a fuzzy Q learning algorithrn for dual-aircraft flight path planning is proposed. The passive detection task model of the dual-aircraft is set up based on the partition of the target active radar's radiation area. The problem is formulated as a Markov decision process (MDP) by using the fuzzy theory to make a generalization of the state space and defining the transition functions, action space and reward function properly. Details of the path planning algorithm are presented. Simulation results indicate that the algorithm can provide adaptive strategies for dual-aircraft to control their flight paths to detect a non-maneuvering or maneu- vering target.
基金supported by the National Defense Science and Technology Innovation(18-163-15-LZ-001-004-13).
文摘This paper investigates the guidance method based on reinforcement learning(RL)for the coplanar orbital interception in a continuous low-thrust scenario.The problem is formulated into a Markov decision process(MDP)model,then a welldesigned RL algorithm,experience based deep deterministic policy gradient(EBDDPG),is proposed to solve it.By taking the advantage of prior information generated through the optimal control model,the proposed algorithm not only resolves the convergence problem of the common RL algorithm,but also successfully trains an efficient deep neural network(DNN)controller for the chaser spacecraft to generate the control sequence.Numerical simulation results show that the proposed algorithm is feasible and the trained DNN controller significantly improves the efficiency over traditional optimization methods by roughly two orders of magnitude.
基金supported by the National Key R&D Program of China (2018AAA0101400)the National Natural Science Foundation of China (61921004,62173251,U1713209,62236002)+1 种基金the Fundamental Research Funds for the Central UniversitiesGuangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control。
文摘In this paper, a reinforcement learning-based multibattery energy storage system(MBESS) scheduling policy is proposed to minimize the consumers ’ electricity cost. The MBESS scheduling problem is modeled as a Markov decision process(MDP) with unknown transition probability. However, the optimal value function is time-dependent and difficult to obtain because of the periodicity of the electricity price and residential load. Therefore, a series of time-independent action-value functions are proposed to describe every period of a day. To approximate every action-value function, a corresponding critic network is established, which is cascaded with other critic networks according to the time sequence. Then, the continuous management strategy is obtained from the related action network. Moreover, a two-stage learning protocol including offline and online learning stages is provided for detailed implementation in real-time battery management. Numerical experimental examples are given to demonstrate the effectiveness of the developed algorithm.
文摘In this paper we review the recent advances in three sub-areas of iterative learning control (ILC): 1) linear ILC for linear processes, 2) linear ILC for nonlinear processes which are global Lipschitz continuous (GLC), and 3) nonlinear ILC for general nonlinear processes. For linear processes, we focus on several basic configurations of linear ILC. For nonlinear processes with linear ILC, we concentrate on the design and transient analysis which were overlooked and missing for a long period. For general classes of nonlinear processes, we demonstrate nonlinear ILC methods based on Lyapunov theory, which is evolving into a new control paradigm.
基金Project(61702063)supported by the National Natural Science Foundation of China。
文摘With the warming up and continuous development of machine learning,especially deep learning,the research on visual question answering field has made significant progress,with important theoretical research significance and practical application value.Therefore,it is necessary to summarize the current research and provide some reference for researchers in this field.This article conducted a detailed and in-depth analysis and summarized of relevant research and typical methods of visual question answering field.First,relevant background knowledge about VQA(Visual Question Answering)was introduced.Secondly,the issues and challenges of visual question answering were discussed,and at the same time,some promising discussion on the particular methodologies was given.Thirdly,the key sub-problems affecting visual question answering were summarized and analyzed.Then,the current commonly used data sets and evaluation indicators were summarized.Next,in view of the popular algorithms and models in VQA research,comparison of the algorithms and models was summarized and listed.Finally,the future development trend and conclusion of visual question answering were prospected.
基金Supported by National Natural Science Foundation of China(60474035),National Research Foundation for the Doctoral Program of Higher Education of China(20050359004),Natural Science Foundation of Anhui Province(070412035)
文摘Experimentation data of perspex glass sheet cutting, using CO2 laser, with missing values were modelled with semi-supervised artificial neural networks. Factorial design of experiment was selected for the verification of orthogonal array based model prediction. It shows improvement in modelling of edge quality and kerf width by applying semi-supervised learning algorithm, based on novel error assessment on simulations. The results are expected to depict better prediction on average by utilizing the systematic randomized techniques to initialize the neural network weights and increase the number of initialization. Missing values handling is difficult with statistical tools and supervised learning techniques; on the other hand, semi-supervised learning generates better results with the smallest datasets even with missing values.