期刊文献+
共找到2,131篇文章
< 1 2 107 >
每页显示 20 50 100
Data-driven prediction of dimensionless quantities for semi-infinite target penetration by integrating machine-learning and feature selection methods 被引量:1
1
作者 Qingqing Chen Xinyu Zhang +2 位作者 Zhiyong Wang Jie Zhang Zhihua Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期105-124,共20页
This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod ... This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod projectiles into semi-infinite metal targets from experimental measurements.The derived mathematical expressions of dimensionless quantities are simplified by the examination of the exponent matrix and coupling relationships between feature variables.As a physics-based dimension reduction methodology,this way reduces high-dimensional parameter spaces to descriptions involving only a few physically interpretable dimensionless quantities in penetrating cases.Then the relative importance of various dimensionless feature variables on the penetration efficiencies for four impacting conditions is evaluated through feature selection engineering.The results indicate that the selected critical dimensionless feature variables by this synergistic method,without referring to the complex theoretical equations and aiding in the detailed knowledge of penetration mechanics,are in accordance with those reported in the reference.Lastly,the determined dimensionless quantities can be efficiently applied to conduct semi-empirical analysis for the specific penetrating case,and the reliability of regression functions is validated. 展开更多
关键词 data-driven dimensional analysis PENETRATION Semi-infinite metal target Dimensionless numbers Feature selection
在线阅读 下载PDF
Design and implementation of data-driven predictive cloud control system 被引量:3
2
作者 GAO Runze XIA Yuanqing +2 位作者 DAI Li SUN Zhongqi ZHAN Yufeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第6期1258-1268,共11页
The rapid increase of the scale and the complexity of the controlled plants bring new challenges such as computing power and storage for conventional control systems.Cloud computing is concerned as a powerful solution... The rapid increase of the scale and the complexity of the controlled plants bring new challenges such as computing power and storage for conventional control systems.Cloud computing is concerned as a powerful solution to handle complex large-scale control missions by using sufficient computing resources.However,the computing ability enables more complex devices and more data to be involved and most of the data have not been fully utilized.Meanwhile,it is even impossible to obtain an accurate model of each device in the complex control systems for the model-based control algorithms.Therefore,motivated by the above reasons,we propose a data-driven predictive cloud control system.To achieve the proposed system,a practical data-driven predictive cloud control testbed is established and together a cloud-edge communication scheme is developed.Finally,the simulations and experiments demonstrate the effectiveness of the proposed system. 展开更多
关键词 cloud control system data-driven predictive control networked control system cloud computing
在线阅读 下载PDF
Data-driven fault diagnosis method for analog circuits based on robust competitive agglomeration 被引量:1
3
作者 Rongling Lang Zheping Xu Fei Gao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第4期706-712,共7页
The data-driven fault diagnosis methods can improve the reliability of analog circuits by using the data generated from it. The data have some characteristics, such as randomness and incompleteness, which lead to the ... The data-driven fault diagnosis methods can improve the reliability of analog circuits by using the data generated from it. The data have some characteristics, such as randomness and incompleteness, which lead to the diagnostic results being sensitive to the specific values and random noise. This paper presents a data-driven fault diagnosis method for analog circuits based on the robust competitive agglomeration (RCA), which can alleviate the incompleteness of the data by clustering with the competing process. And the robustness of the diagnostic results is enhanced by using the approach of robust statistics in RCA. A series of experiments are provided to demonstrate that RCA can classify the incomplete data with a high accuracy. The experimental results show that RCA is robust for the data needed to be classified as well as the parameters needed to be adjusted. The effectiveness of RCA in practical use is demonstrated by two analog circuits. 展开更多
关键词 data-driven fault diagnosis analog circuit robust competitive agglomeration (RCA).
在线阅读 下载PDF
Data-driven nonlinear control of a solid oxide fuel cell system 被引量:2
4
作者 李益国 沈炯 +2 位作者 K.Y.Lee 刘西陲 费文哲 《Journal of Central South University》 SCIE EI CAS 2012年第7期1892-1901,共10页
Solid oxide fuel cells (SOFCs) are considered to be one of the most important clean,distributed resources. However,SOFCs present a challenging control problem owing to their slow dynamics,nonlinearity and tight operat... Solid oxide fuel cells (SOFCs) are considered to be one of the most important clean,distributed resources. However,SOFCs present a challenging control problem owing to their slow dynamics,nonlinearity and tight operating constraints. A novel data-driven nonlinear control strategy was proposed to solve the SOFC control problem by combining a virtual reference feedback tuning (VRFT) method and support vector machine. In order to fulfill the requirement for fuel utilization and control constraints,a dynamic constraints unit and an anti-windup scheme were adopted. In addition,a feedforward loop was designed to deal with the current disturbance. Detailed simulations demonstrate that the fast response of fuel flow for the current demand disturbance and zero steady error of the output voltage are both achieved. Meanwhile,fuel utilization is kept almost within the safe region. 展开更多
关键词 solid oxide fuel cell (SOFC) data-driven method virtual reference feedback tuning (VRFT) support vector machine(SVM) ANTI-WINDUP
在线阅读 下载PDF
Nonlinear direct data-driven control for UAV formation flight system 被引量:1
5
作者 WANG Jianhong Ricardo A.RAMIREZ-MENDOZA XU Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1409-1418,共10页
This paper proposes the nonlinear direct data-driven control from theoretical analysis and practical engineering,i.e.,unmanned aerial vehicle(UAV)formation flight system.Firstly,from the theoretical point of view,cons... This paper proposes the nonlinear direct data-driven control from theoretical analysis and practical engineering,i.e.,unmanned aerial vehicle(UAV)formation flight system.Firstly,from the theoretical point of view,consider one nonlinear closedloop system with a nonlinear plant and nonlinear feed-forward controller simultaneously.To avoid the complex identification process for that nonlinear plant,a nonlinear direct data-driven control strategy is proposed to design that nonlinear feed-forward controller only through the input-output measured data sequence directly,whose detailed explicit forms are model inverse method and approximated analysis method.Secondly,from the practical point of view,after reviewing the UAV formation flight system,nonlinear direct data-driven control is applied in designing the formation controller,so that the followers can track the leader’s desired trajectory during one small time instant only through solving one data fitting problem.Since most natural phenomena have nonlinear properties,the direct method must be the better one.Corresponding system identification and control algorithms are required to be proposed for those nonlinear systems,and the direct nonlinear controller design is the purpose of this paper. 展开更多
关键词 nonlinear system nonlinear direct data-driven control model inverse control unmanned aerial vehicle(UAV)formation flight.
在线阅读 下载PDF
Notes on Data-driven System Approaches 被引量:31
6
作者 XU Jian-Xin HOU Zhong-Sheng 《自动化学报》 EI CSCD 北大核心 2009年第6期668-675,共8页
关键词 数据驱动 数据分析 自动化系统 分析方法
在线阅读 下载PDF
Performance Monitoring of the Data-driven Subspace Predictive Control Systems Based on Historical Objective Function Benchmark 被引量:3
7
作者 王陆 李柠 李少远 《自动化学报》 EI CSCD 北大核心 2013年第5期542-547,共6页
关键词 预测控制系统 性能监控 数据驱动 子空间 历史 基准 监视控制器 目标函数
在线阅读 下载PDF
知识数据双驱动的感潮河网水动力智能模拟方法 被引量:3
8
作者 袁赛瑜 陈逸鸿 +2 位作者 罗霄 张汇明 唐洪武 《水科学进展》 北大核心 2025年第1期28-38,共11页
感潮河网地区大量水闸、泵站智慧高效的联合调度是实现河网活水提质的重要保障,但以往的智能模拟方法缺乏物理可解释性,难以准确描述感潮河网复杂的水动力过程。本文提出了一种知识数据双驱动的感潮河网水动力智能模拟方法,应用于概化... 感潮河网地区大量水闸、泵站智慧高效的联合调度是实现河网活水提质的重要保障,但以往的智能模拟方法缺乏物理可解释性,难以准确描述感潮河网复杂的水动力过程。本文提出了一种知识数据双驱动的感潮河网水动力智能模拟方法,应用于概化感潮河网和上海蕰南片感潮河网的水动力模拟。结果表明:以人工神经网络为主干、以河网水流控制方程作为物理约束,构建包含控制方程残差的人工神经网络损失函数,不断迭代优化神经网络权重集直至损失函数满足要求,从而实现同时具备物理可解释性和高效计算效率的感潮河网水动力智能模拟;该方法区别于传统人工神经网络,表现在所需的训练数据大幅度减少,还可以得到没有训练数据断面的水动力过程;该方法具有良好的模拟精度、计算效率以及鲁棒性。 展开更多
关键词 水动力模拟 感潮河网 智能模拟 知识驱动 数据驱动
在线阅读 下载PDF
数字化电力计量智慧实验室构建与关键技术探讨 被引量:4
9
作者 仝霞 程鹏申 +3 位作者 李雪城 解进军 靳阳 李冀 《电测与仪表》 北大核心 2025年第1期89-100,共12页
随着数字经济的蓬勃发展和新型电力系统的快速建设,将先进的数字化技术与电力计量技术进行深度融合,建设数字化电力计量智慧实验室,是加快构建现代先进测量体系,推动电力计量数字化转型的重要途经。围绕现阶段电力计量体系构建过程中的... 随着数字经济的蓬勃发展和新型电力系统的快速建设,将先进的数字化技术与电力计量技术进行深度融合,建设数字化电力计量智慧实验室,是加快构建现代先进测量体系,推动电力计量数字化转型的重要途经。围绕现阶段电力计量体系构建过程中的不足及面临的挑战性难题,详细描述了电力计量智慧实验室的总体架构与技术体系,在此基础上,对实验室建设过程中的计量数据全景感知、边缘计算与协同调控、平台交互与数据处理、跨域融合与增值服务、安全防护等关键问题进行深入探讨,并对数字化电力计量智慧实验室的功能与价值实现进行展望,希望能为电力计量技术的发展提供一定的借鉴。 展开更多
关键词 数字化技术 新型电力系统 电力计量 智慧实验室 数据驱动
在线阅读 下载PDF
极端暴雨条件下城市内涝模拟研究进展与展望 被引量:2
10
作者 周添红 唐佐槐 +3 位作者 褚俊英 周祖昊 李孟泽 唐明 《人民长江》 北大核心 2025年第5期14-22,30,共10页
在全球气候变化和城市化的背景下,极端暴雨事件频发,城市内涝问题日益严峻,威胁城市安全。为减轻内涝威胁和提高极端暴雨事件的应急管理水平,借助模拟手段分析极端暴雨条件下城市内涝过程已成为重要研究趋势。在极端暴雨基本特征分析的... 在全球气候变化和城市化的背景下,极端暴雨事件频发,城市内涝问题日益严峻,威胁城市安全。为减轻内涝威胁和提高极端暴雨事件的应急管理水平,借助模拟手段分析极端暴雨条件下城市内涝过程已成为重要研究趋势。在极端暴雨基本特征分析的基础上,识别了城市内涝积水的主要影响因素;系统总结了极端暴雨条件下城市内涝模拟的两大主流方法,即机理驱动模型和数据驱动模型,前者物理过程明确,但计算用时长,后者计算效率满足快速模拟预测的要求,但缺乏物理机理。在此基础上,从城市内涝模拟结果的多指标动态分析、模拟精度和效率的提升、城市尺度模型与流域尺度模型的深度融合、机理模型和数值天气预报的动态结合、机理驱动模拟和数据驱动模拟的实时耦合5个方面展望了极端暴雨条件下城市内涝模拟的未来发展趋势。研究成果可为极端暴雨条件下城市内涝过程识别与管理提供借鉴。 展开更多
关键词 极端暴雨 城市内涝模拟 数据驱动模型 机理驱动模型
在线阅读 下载PDF
基于一维卷积神经网络的钢轨波磨迁移诊断方法 被引量:2
11
作者 王阳 肖宏 +3 位作者 张智海 迟义浩 魏绍磊 方树薇 《铁道学报》 北大核心 2025年第4期115-123,共9页
监测钢轨表面波磨状态是控制铁路环境振动与噪声的必要措施,利用安装在运营列车车体上的加速度传感器实现对钢轨波磨的实时监测,具有低成本、高效和便携的优点。为实现利用车体动态响应识别钢轨波磨,通过小波变换等手段分析钢轨波磨激... 监测钢轨表面波磨状态是控制铁路环境振动与噪声的必要措施,利用安装在运营列车车体上的加速度传感器实现对钢轨波磨的实时监测,具有低成本、高效和便携的优点。为实现利用车体动态响应识别钢轨波磨,通过小波变换等手段分析钢轨波磨激励下车体振动特性,建立车辆-轨道刚柔耦合模型,获取车体垂向加速度仿真数据集。基于一维卷积神经网络搭建钢轨波磨检测模型并在仿真数据集上进行训练,与其他几种常见的检测模型进行对比,最后将模型迁移到实测车体垂向加速度数据集上实现对钢轨波磨的诊断。研究结果表明,钢轨波磨激励的振动能量在运行方向左侧和右侧空气弹簧对应的地板表面位置基本相同,通过车体垂向振动加速度信号无法区分左右两股钢轨的差异。与SVM、LSTM及2D-CNN相比,本文提出的钢轨波磨检测模型精度最高,单个样本推理时间仅为1.00 ms,钢轨波磨识别准确度达92.38%。 展开更多
关键词 钢轨波磨 车载检测 数据驱动 迁移学习 一维卷积神经网络(1D-CNN)
在线阅读 下载PDF
基于卷积-长短记忆神经网络的页岩气井短期产量预测与概率性评价 被引量:1
12
作者 郭建春 任文希 +3 位作者 曾凡辉 刘彧轩 段又菁 罗扬 《钻采工艺》 北大核心 2025年第1期130-137,共8页
页岩气赋存方式多样、渗流机理复杂,气井生产制度多变,准确预测页岩气井产量难度大。针对这一问题,文章基于数据驱动的思想,对历史生产数据进行了预处理,建立了由产量、油嘴尺寸、生产时间和关井时间组成的多维时间序列,结合卷积神经网... 页岩气赋存方式多样、渗流机理复杂,气井生产制度多变,准确预测页岩气井产量难度大。针对这一问题,文章基于数据驱动的思想,对历史生产数据进行了预处理,建立了由产量、油嘴尺寸、生产时间和关井时间组成的多维时间序列,结合卷积神经网络(CNN)和长短记忆神经网络(LSTM),基于混合式深度学习架构,建立了基于卷积-长短记忆神经网络的页岩气井短期产量预测模型(CNN-LSTM)。CNN-LSTM采用CNN提取高维特征之间的交互作用信息,并利用LSTM提取这些特征的时序信息,实现了交互作用信息和时序信息的融合。生产数据测试表明:CNN-LSTM考虑了生产制度的影响,因此其产量预测精度高于单变量LSTM和多变量LSTM。进一步发展了基于核密度估计理论的产量概率性预测方法,实现了产量预测结果的不确定分析,获得了未来气井产量的变化范围。研究成果有望为页岩气井生产动态分析、产量预测和生产管理提供支撑。 展开更多
关键词 页岩气井 产量预测 神经网络 不确定分析 数据驱动
在线阅读 下载PDF
数据驱动的个性化学习:实然问题、应然逻辑与实现路径 被引量:12
13
作者 钟绍春 杨澜 范佳荣 《电化教育研究》 北大核心 2025年第1期13-19,33,共8页
教育数字化转型的全面推进和人工智能在教育中的广泛应用,为破解个性化学习难题提供了切实可行的途径,数据驱动的个性化学习已成为教育高质量发展的必由之路。然而,当前数据驱动的个性化学习普遍存在着学习行为感知与状态评价精度不高... 教育数字化转型的全面推进和人工智能在教育中的广泛应用,为破解个性化学习难题提供了切实可行的途径,数据驱动的个性化学习已成为教育高质量发展的必由之路。然而,当前数据驱动的个性化学习普遍存在着学习行为感知与状态评价精度不高、学习特征挖掘不准、学习规律挖掘不全、学习问题溯源不深、学习干预精度不佳等瓶颈性难题。为此,研究从情境感知、主体理解和智能干预等方面深入剖析了数据驱动个性化学习的应然逻辑。在此基础上,从学习行为数据有效感知与理解、学习效果精准评估的个性化学习追踪、薄弱知识点和异常学习行为的学习问题成因溯源、潜在交互学习规律发现的教育知识图谱高阶推理、公共学习路网构建与高适配个性化学习路径规划等方面,讨论了数据驱动个性化学习的实现路径和方法。 展开更多
关键词 个性化学习 数据驱动 情境感知 学习路径规划 教育知识图谱
在线阅读 下载PDF
基于状态空间离散的非线性动力系统全局分析方法进展:从模型驱动到数据驱动 被引量:1
14
作者 李自刚 洪灵 江俊 《力学进展》 北大核心 2025年第3期455-496,共42页
非线性动力系统的一切响应行为均受制于其内在的全局结构,诸如多稳吸引子及其影响域的形貌和空间分布,不稳定不变集和不变流形等.因而,在指定状态空间内开展全局分析,不仅可以获得认识和预测系统响应的全部信息,还能深刻揭示诱发系统复... 非线性动力系统的一切响应行为均受制于其内在的全局结构,诸如多稳吸引子及其影响域的形貌和空间分布,不稳定不变集和不变流形等.因而,在指定状态空间内开展全局分析,不仅可以获得认识和预测系统响应的全部信息,还能深刻揭示诱发系统复杂分岔、激变或边界蜕变等众多动力学现象的内在机制.目前,数值方法仍是非线性动力系统全局分析的最有效手段.相较于点尺度的数值积分方法或点映射法,基于状态空间离散思想的方法(如:胞映射方法等),其采用子集覆盖来逼近系统的不变集,一方面可以高效刻画系统的全局结构形貌,另一方面可以实现对相邻轨道动态特征的集合表征.胞映射方法经历40余年的发展,其功能不断增强,计算效率和精度已显著提升,应用场景也逐渐拓宽.本文第2节从当前的视角对状态空间离散方式进行简要归类,以便于读者更好地了解在全局分析实施过程中该框架体系的本质及优势.第3节着重介绍近些年提出的一系列状态空间离散方法,展示在非线性系统全局结构的高效刻画和内在特征的数据表征两方面已取得的最新进展,突出全局分析从模型驱动向数据驱动的思维模式转变.第4节总结意义和价值,并就如何在状态空间离散框架下进一步泛化全局分析的概念,以及应对未来发展和应用需求可能面临的问题和可以拓展的方向提出见解. 展开更多
关键词 状态空间离散 全局分析 胞映射方法 模型驱动 数据驱动
在线阅读 下载PDF
面向涡轮的PCA-POA-LSTM数据驱动建模及故障预警方法 被引量:1
15
作者 刘斌 白红艳 +3 位作者 何璐瑶 张晓北 田野 杨理践 《电子测量与仪器学报》 北大核心 2025年第1期145-155,共11页
针对传统LSTM数据驱动模型存在输入参数规模过大导致运算负担过大、超参数选择不当和涡轮系统故障发生频率、运维成本高的问题,提出一种基于PCA-POA-LSTM的涡轮数据驱动建模方法,并结合滑动窗口法实现了涡轮故障预警。首先,应用PCA降维... 针对传统LSTM数据驱动模型存在输入参数规模过大导致运算负担过大、超参数选择不当和涡轮系统故障发生频率、运维成本高的问题,提出一种基于PCA-POA-LSTM的涡轮数据驱动建模方法,并结合滑动窗口法实现了涡轮故障预警。首先,应用PCA降维技术,减少输入数据维度;其次,采用POA参数寻优方法选出最优超参数组合;然后,利用LSTM算法预测涡轮的输出参数;最后,在PCA-POA-LSTM涡轮数据驱动模型预测结果的基础上,结合滑动窗口法对涡轮故障进行预警,通过窗口内标准差定义报警阈值,攻克了涡轮故障预警的难题。结果表明,以PCA-POA-LSTM为基础的涡轮数据驱动建模实现了较高的精确度,平均绝对百分比误差均在0.396以下,平均绝对误差均在0.809以下,平均方根误差均在1.387以下。并且故障预警方法,至少可提前173个监测点发出故障预警信号,实现了对涡轮故障预警的目的,为未来开展涡轮健康管理提供了理论依据和技术支持。 展开更多
关键词 涡轮 鹈鹕优化算法 长短期记忆网络 主成分分析 数据驱动
在线阅读 下载PDF
基于递归本征正交分解与强跟踪扩展卡尔曼滤波的结构损伤识别 被引量:1
16
作者 杨少冲 姚远 +2 位作者 刘家亮 雷振 方有亮 《振动工程学报》 北大核心 2025年第1期117-125,共9页
针对目前已有损伤识别方法难以实时跟踪结构损伤且计算量大的问题,提出了一种基于递归本征正交分解(recursive proper orthogonal decomposition,RPOD)与强跟踪扩展卡尔曼滤波(strong tracking extended Kalman filter,STEKF)相结合的... 针对目前已有损伤识别方法难以实时跟踪结构损伤且计算量大的问题,提出了一种基于递归本征正交分解(recursive proper orthogonal decomposition,RPOD)与强跟踪扩展卡尔曼滤波(strong tracking extended Kalman filter,STEKF)相结合的模型降阶与结构损伤在线识别方法,对动载荷作用下的结构损伤识别进行了研究。利用RPOD方法在线更新并实时建立反映结构状态的降阶模型,解决未知载荷作用下多自由度结构动力分析计算量大且难以收敛的问题,同时跟踪损伤的演化并对其进行定位;通过STEKF方法跟踪降阶模型的状态向量,识别因损伤而退化的降阶模型参数。分别采用六层剪切型框架的数值模拟与三层钢框架的模型试验验证了该方法的可行性,结果表明,所提出的方法能够准确建立降阶模型并跟踪降阶模型参数的时变历程,同时可以有效地识别出剪切型建筑结构损伤的位置和程度,即使在处理高程度噪声时仍有较高的精度。 展开更多
关键词 损伤识别 模型降阶 递归本征正交分解 强跟踪扩展卡尔曼滤波 数据驱动
在线阅读 下载PDF
我国统一数据要素大市场框架体系与建设路径研究 被引量:4
17
作者 陈晓红 肖粲然 +2 位作者 曹文治 张威威 刘咏梅 《中国工程科学》 北大核心 2025年第1期40-50,共11页
数字经济成为时代发展潮流,建设全国统一数据要素大市场是推动数字经济发展、加快构建新发展格局的关键性举措。本文探讨了统一数据要素大市场的概念和内涵,结合我国数据要素市场发展现状总结了统一数据要素大市场建设面临的制度体系、... 数字经济成为时代发展潮流,建设全国统一数据要素大市场是推动数字经济发展、加快构建新发展格局的关键性举措。本文探讨了统一数据要素大市场的概念和内涵,结合我国数据要素市场发展现状总结了统一数据要素大市场建设面临的制度体系、基础设施、技术服务、市场标准等方面的问题;构建了多层次的数据要素市场,针对性提出了我国统一数据要素大市场体系框架以及市场生态、交易平台、保障体系等建设要点。研究认为,我国统一数据要素大市场建设可采取“两阶段、四步走”的发展路径,突出市场基础建设阶段的数据要素高质量供给、安全存储管理,场景驱动服务阶段的高效交易流通、实际应用效能。为此建议,深化政策扶持、强化设施建设、规范数据标准、破除数据壁垒、培育良好生态,加快建设健康、稳定、高效的数据市场,促进数字经济高质量发展。 展开更多
关键词 数据要素 统一大市场 市场生态 场景驱动 数据交互 数据标准
在线阅读 下载PDF
基于电压-功率灵敏度的有源配电网数据驱动电压协调控制策略 被引量:1
18
作者 张波 文晓君 吴璇 《电力系统及其自动化学报》 北大核心 2025年第1期35-42,共8页
随着分布式光伏渗透率的不断提高,实现配电网电压的快速精确调控变得愈加重要。首先,建立多输入-多输出的电压-功率灵敏度BP神经网络回归预测模型,得到功率参数、节点电压与电压-功率灵敏度间的非线性映射关系;其次,构建高比例光伏有源... 随着分布式光伏渗透率的不断提高,实现配电网电压的快速精确调控变得愈加重要。首先,建立多输入-多输出的电压-功率灵敏度BP神经网络回归预测模型,得到功率参数、节点电压与电压-功率灵敏度间的非线性映射关系;其次,构建高比例光伏有源配电网电压协调控制策略,基于电压-功率灵敏度降序调控原则,通过无功补偿和有功削减结合的两阶段电压调控模式实现配电网节点电压的快速调控;最后,利用IEEE 33和IEEE 141节点典型配电系统的仿真,计算分析验证所提方法的正确性和有效性。 展开更多
关键词 BP神经网络 数据驱动 电压-功率灵敏度 电压协调控制 有源配电网
在线阅读 下载PDF
基于交通事故数据驱动的乘用车AEB高速公路测试场景构建 被引量:1
19
作者 刘永涛 刘永杰 +2 位作者 朱屹晨 惠志强 赵晨 《汽车技术》 北大核心 2025年第6期15-22,共8页
为了提升乘用车自动紧急制动系统(AEB)测试场景的效能,基于中国交通事故深度研究(CIDAS)数据库中183起交通事故案例,探究高速公路AEB系统测试场景构建。从CIDAS数据库中选取静态与动态因素作为聚类参数,使用K均值聚类方法对事故数据进... 为了提升乘用车自动紧急制动系统(AEB)测试场景的效能,基于中国交通事故深度研究(CIDAS)数据库中183起交通事故案例,探究高速公路AEB系统测试场景构建。从CIDAS数据库中选取静态与动态因素作为聚类参数,使用K均值聚类方法对事故数据进行初步分类,根据聚类结果得到了5类典型事故场景,在此基础上参考现有测评标准,设计了5类乘用车AEB系统的高速公路测试场景,为AEB系统的开发与优化提供参考。 展开更多
关键词 交通事故 数据驱动 K 均值聚类 自动紧急制动系统 测试场景构建
在线阅读 下载PDF
基于混合物理数据驱动的油藏地质体CO_(2)利用与封存代理模型研究 被引量:3
20
作者 芮振华 邓海洋 胡婷 《钻采工艺》 北大核心 2025年第1期190-198,共9页
在全球能源转型与能源需求持续增长的背景下,碳捕获、利用和封存(CCUS)已成为极具前景的研究方向。CO_(2)利用与封存协同优化通常依赖大量的组分正演模拟,但三维高分辨率模型计算成本高昂,限制其广泛应用。基于混合物理数据驱动的GPSNe... 在全球能源转型与能源需求持续增长的背景下,碳捕获、利用和封存(CCUS)已成为极具前景的研究方向。CO_(2)利用与封存协同优化通常依赖大量的组分正演模拟,但三维高分辨率模型计算成本高昂,限制其广泛应用。基于混合物理数据驱动的GPSNet模型以其高效的计算效率已成为一种理想的代理模型,然而现有的GPSNet模型难以准确捕获复杂的相行为和组分间的相互作用,为此,文章提出了一种新型专用于组分模拟的comp-GPSNet模型,通过标准失配最小化方法和基于伴随的梯度优化算法对comp-GPSNet模型进行训练,以拟合从高分辨率模拟中获取的井响应数据。将训练后的模型应用到PUNQ-S3油藏中,全面评估复杂条件下comp-GPSNet模型的预测能力,结果表明,comp-GPSNet模型在单井和区块范围内均表现出良好的预测精度,CO_(2)利用率和封存率的预测误差分别为0.16%和3.13%。该模型为CO_(2)利用与封存协同优化提供了一个稳健的代理框架,以推动油田数字化与智能化发展。 展开更多
关键词 CCUS comp-GPSNet 混合物理数据驱动 代理模型 组分模拟
在线阅读 下载PDF
上一页 1 2 107 下一页 到第
使用帮助 返回顶部