In a time characterized by the availability of vast amounts of data,the effective utilization of information is critical for timely decision-making in military operations.However,processing large amounts of data requi...In a time characterized by the availability of vast amounts of data,the effective utilization of information is critical for timely decision-making in military operations.However,processing large amounts of data requires computational resources and time.Therefore,decision makers have used data-centric technologies to take advantage of public and private data sources to support military operations.This survey explores the integration and application of data-centric technologies,such as data analytics,data science,and machine learning,to optimize decision-making workflows within military contexts supporting the deployment of military assets and resources.To address the information gap,this article presents a literature review,specifically a survey.Our survey examines the use of the mentioned technologies to process and analyze information that contributes to the phases of situational awareness,and planning in military environments.We then introduce a taxonomy of the approaches associated with implementing these technologies in military scenarios.Furthermore,we discuss relevant factors for the seamless integration of data-centric technologies into military decision-making processes,and reveal the importance of specialized personnel,architectures,and cybersecurity issues in the task of developing prototypes and models.The findings of this paper aim to provide valuable insights for military institutions,offering a deeper understanding of the use of data-centric technologies as innovative practices to enhance the effectiveness of military decision-making.展开更多
缓存是命名数据网络(named data networking,NDN)有别于传统网络最突出的特性之一,NDN中默认所有节点都具有缓存所有经过数据的功能.这种"处处缓存"策略导致网内大量冗余数据的产生,使网内缓存被严重浪费.针对上述问题,首次...缓存是命名数据网络(named data networking,NDN)有别于传统网络最突出的特性之一,NDN中默认所有节点都具有缓存所有经过数据的功能.这种"处处缓存"策略导致网内大量冗余数据的产生,使网内缓存被严重浪费.针对上述问题,首次提出了一种基于节点分类(based on node classification,BNC)的数据存储策略.基于节点位置的不同,将数据返回客户端所经过的节点分为"边缘"类节点与"核心"类节点.当数据经过"核心"类节点时,通过权衡该类节点的位置与数据在不同节点的流行度分布,将数据存储在对其他节点最有利的节点中;当数据经过"边缘"类节点时,通过该数据流行度来选择最有利于客户端的位置.仿真结果表明,提出的策略将有效提高数据命中率,减少数据请求时延和距离.展开更多
文摘In a time characterized by the availability of vast amounts of data,the effective utilization of information is critical for timely decision-making in military operations.However,processing large amounts of data requires computational resources and time.Therefore,decision makers have used data-centric technologies to take advantage of public and private data sources to support military operations.This survey explores the integration and application of data-centric technologies,such as data analytics,data science,and machine learning,to optimize decision-making workflows within military contexts supporting the deployment of military assets and resources.To address the information gap,this article presents a literature review,specifically a survey.Our survey examines the use of the mentioned technologies to process and analyze information that contributes to the phases of situational awareness,and planning in military environments.We then introduce a taxonomy of the approaches associated with implementing these technologies in military scenarios.Furthermore,we discuss relevant factors for the seamless integration of data-centric technologies into military decision-making processes,and reveal the importance of specialized personnel,architectures,and cybersecurity issues in the task of developing prototypes and models.The findings of this paper aim to provide valuable insights for military institutions,offering a deeper understanding of the use of data-centric technologies as innovative practices to enhance the effectiveness of military decision-making.
基金Supported by the Key Program of National Natural Science Foundation of China under Grant No.60533110(国家自然科学基金重点项目)the National Natural Science Foundation of China under Grant No.60473075(国家自然科学基金)+3 种基金the National Grand Fundamental Research973Program of China under Grant No.2006CB303000(国家重点基础研究发展计划(973))the Program for New Century Excellent Talents in University of China under Grant No.NCET-05-0333(新世纪优秀人才支持计划)the Key Program of the Natural Science Foundation of Heilongjiang Province of China under Grant No.ZJG03-05(黑龙江省自然科学基金重点项目)the Heilongjiang Province Scientific and Technological Special Fund for Young Scholars of China under Grant No.QC06C033(黑龙江省青年科技专项资金)
文摘缓存是命名数据网络(named data networking,NDN)有别于传统网络最突出的特性之一,NDN中默认所有节点都具有缓存所有经过数据的功能.这种"处处缓存"策略导致网内大量冗余数据的产生,使网内缓存被严重浪费.针对上述问题,首次提出了一种基于节点分类(based on node classification,BNC)的数据存储策略.基于节点位置的不同,将数据返回客户端所经过的节点分为"边缘"类节点与"核心"类节点.当数据经过"核心"类节点时,通过权衡该类节点的位置与数据在不同节点的流行度分布,将数据存储在对其他节点最有利的节点中;当数据经过"边缘"类节点时,通过该数据流行度来选择最有利于客户端的位置.仿真结果表明,提出的策略将有效提高数据命中率,减少数据请求时延和距离.