Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently opera...Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently operational in orbit.The data obtained from Fengyun satellites is employed in a multitude of applications,including weather forecasting,meteorological disaster prevention and reduction,climate change,global environmental monitoring,and space weather.These data products and services are made available to the global community,resulting in tangible social and economic benefits.In 2023,two Fengyun meteorological satellites were successfully launched.This report presents an overview of the two recently launched Fengyun satellites and currently in orbit Fengyun satellites,including an evaluation of their remote sensing instruments since 2022.Additionally,it addresses the subject of Fengyun satellite data archiving,data services,application services,international cooperation,and supporting activities.Furthermore,the development prospects have been outlined.展开更多
China began to develop its meteorological satellite program since 1969.With 50-years’growing,there are 17 Fengyun(FY)meteorological satellites launched successfully.At present,seven of them are in orbit to provide th...China began to develop its meteorological satellite program since 1969.With 50-years’growing,there are 17 Fengyun(FY)meteorological satellites launched successfully.At present,seven of them are in orbit to provide the operational service,including three polar orbiting meteorological satellites and four geostationary meteorological satellites.Since last COSPAR report,no new Fengyun satellite has been launched.The information of the on-orbit FY-2 series,FY-3 series,and FY-4 series has been updated.FY-3D and FY-2H satellites accomplished the commission test and transitioned into operation in 2018.FY-2E satellite completed its service to decommission in 2019.The web-based users and Direct Broadcasting(DB)users keep growing worldwide to require the Fengyun satellite data and products.A new Mobile Application Service has been launched to Fengyun users based on the cloud technology in 2018.In this report,the international and regional co-operations to facilitate the Fengyun user community have been addressed especially.To strengthen the data service in the Belt and Road countries,the Emergency Support Mechanism of Fengyun satellite(FY_ESM)has been established since 2018.Meanwhile,a Recalibrating 30-years’archived Fengyun satellite data project has been founded since 2018.This project targets to generate the Fundamental Climate Data Record(FCDR)as a space agency response to the Global Climate Observation System(GCOS).At last,the future Fengyun program up to 2025 has been introduced as well.展开更多
China’s efforts to develop Fengyun meteorological satellites have made major strides over the past 50 years,with the polar and geostationary meteorological satellite series achieving continuously stable operation to ...China’s efforts to develop Fengyun meteorological satellites have made major strides over the past 50 years,with the polar and geostationary meteorological satellite series achieving continuously stable operation to persistently provide data and product services globally.By the end of 2021,19 Chinese self-developed Fengyun meteorological satellites have been launched successfully.Seven of them are in operation at present,the data and products are widely applied to weather analysis,numerical weather forecasting and climate prediction,as well as environment and disaster monitoring.Since the last COSPAR report,FY-4B,the first new-generation operational geostationary satellite,and FY-3E,the first early-morning orbit satellite in China’s polar-orbiting meteorological satellite family have been launched in 2021.The characteristics of the two latest satellites and the instruments onboard are addressed in this report.The status of current Fengyun Satellites,product and data service and international cooperation and supporting activities has been introduced as well.展开更多
Various application domains require the integration of distributed real-time or near-real-time systems with non-real-time systems.Smart cities,smart homes,ambient intelligent systems,or network-centric defense systems...Various application domains require the integration of distributed real-time or near-real-time systems with non-real-time systems.Smart cities,smart homes,ambient intelligent systems,or network-centric defense systems are among these application domains.Data Distribution Service(DDS)is a communication mechanism based on Data-Centric Publish-Subscribe(DCPS)model.It is used for distributed systems with real-time operational constraints.Java Message Service(JMS)is a messaging standard for enterprise systems using Service Oriented Architecture(SOA)for non-real-time operations.JMS allows Java programs to exchange messages in a loosely coupled fashion.JMS also supports sending and receiving messages using a messaging queue and a publish-subscribe interface.In this article,we propose an architecture enabling the automated integration of distributed real-time and non-real-time systems.We test our proposed architecture using a distributed Command,Control,Communications,Computers,and Intelligence(C4I)system.The system has DDS-based real-time Combat Management System components deployed to naval warships,and SOA-based non-real-time Command and Control components used at headquarters.The proposed solution enables the exchange of data between these two systems efficiently.We compare the proposed solution with a similar study.Our solution is superior in terms of automation support,ease of implementation,scalability,and performance.展开更多
基金Supported by National Natural Science Foundation of China(42274217)。
文摘Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently operational in orbit.The data obtained from Fengyun satellites is employed in a multitude of applications,including weather forecasting,meteorological disaster prevention and reduction,climate change,global environmental monitoring,and space weather.These data products and services are made available to the global community,resulting in tangible social and economic benefits.In 2023,two Fengyun meteorological satellites were successfully launched.This report presents an overview of the two recently launched Fengyun satellites and currently in orbit Fengyun satellites,including an evaluation of their remote sensing instruments since 2022.Additionally,it addresses the subject of Fengyun satellite data archiving,data services,application services,international cooperation,and supporting activities.Furthermore,the development prospects have been outlined.
基金Supported by the National Key Research and Development Program of China(2018YFB0504900,2018YFB0504905)。
文摘China began to develop its meteorological satellite program since 1969.With 50-years’growing,there are 17 Fengyun(FY)meteorological satellites launched successfully.At present,seven of them are in orbit to provide the operational service,including three polar orbiting meteorological satellites and four geostationary meteorological satellites.Since last COSPAR report,no new Fengyun satellite has been launched.The information of the on-orbit FY-2 series,FY-3 series,and FY-4 series has been updated.FY-3D and FY-2H satellites accomplished the commission test and transitioned into operation in 2018.FY-2E satellite completed its service to decommission in 2019.The web-based users and Direct Broadcasting(DB)users keep growing worldwide to require the Fengyun satellite data and products.A new Mobile Application Service has been launched to Fengyun users based on the cloud technology in 2018.In this report,the international and regional co-operations to facilitate the Fengyun user community have been addressed especially.To strengthen the data service in the Belt and Road countries,the Emergency Support Mechanism of Fengyun satellite(FY_ESM)has been established since 2018.Meanwhile,a Recalibrating 30-years’archived Fengyun satellite data project has been founded since 2018.This project targets to generate the Fundamental Climate Data Record(FCDR)as a space agency response to the Global Climate Observation System(GCOS).At last,the future Fengyun program up to 2025 has been introduced as well.
基金Supported by the National Key Research and Development Program of China(2018YFB0504900,2018YFB0504905)the National Project on Fengyun Meteorological Satellite Development。
文摘China’s efforts to develop Fengyun meteorological satellites have made major strides over the past 50 years,with the polar and geostationary meteorological satellite series achieving continuously stable operation to persistently provide data and product services globally.By the end of 2021,19 Chinese self-developed Fengyun meteorological satellites have been launched successfully.Seven of them are in operation at present,the data and products are widely applied to weather analysis,numerical weather forecasting and climate prediction,as well as environment and disaster monitoring.Since the last COSPAR report,FY-4B,the first new-generation operational geostationary satellite,and FY-3E,the first early-morning orbit satellite in China’s polar-orbiting meteorological satellite family have been launched in 2021.The characteristics of the two latest satellites and the instruments onboard are addressed in this report.The status of current Fengyun Satellites,product and data service and international cooperation and supporting activities has been introduced as well.
文摘Various application domains require the integration of distributed real-time or near-real-time systems with non-real-time systems.Smart cities,smart homes,ambient intelligent systems,or network-centric defense systems are among these application domains.Data Distribution Service(DDS)is a communication mechanism based on Data-Centric Publish-Subscribe(DCPS)model.It is used for distributed systems with real-time operational constraints.Java Message Service(JMS)is a messaging standard for enterprise systems using Service Oriented Architecture(SOA)for non-real-time operations.JMS allows Java programs to exchange messages in a loosely coupled fashion.JMS also supports sending and receiving messages using a messaging queue and a publish-subscribe interface.In this article,we propose an architecture enabling the automated integration of distributed real-time and non-real-time systems.We test our proposed architecture using a distributed Command,Control,Communications,Computers,and Intelligence(C4I)system.The system has DDS-based real-time Combat Management System components deployed to naval warships,and SOA-based non-real-time Command and Control components used at headquarters.The proposed solution enables the exchange of data between these two systems efficiently.We compare the proposed solution with a similar study.Our solution is superior in terms of automation support,ease of implementation,scalability,and performance.