速度和效果是聚类算法面临的两大问题.DBSCAN(density based spatial clustering of applications with noise)是典型的基于密度的一种聚类方法,对于大型数据库的聚类实验显示了它在速度上的优越性.提出了一种基于密度的递归聚类算法(re...速度和效果是聚类算法面临的两大问题.DBSCAN(density based spatial clustering of applications with noise)是典型的基于密度的一种聚类方法,对于大型数据库的聚类实验显示了它在速度上的优越性.提出了一种基于密度的递归聚类算法(recursive density based clustering algorithm,简称RDBC),此算法可以智能地、动态地修改其密度参数.RDBC是基于DBSCAN的一种改进算法,其运算复杂度和DBSCAN相同.通过在Web文档上的聚类实验,结果表明,RDBC不但保留了DBSCAN高速度的优点,而且聚类效果大大优于DBSCAN.展开更多
挖掘用户偏爱的浏览模式就是从Web日志中发现多数用户偏爱的浏览路径。网页上的浏览时间被转换成一个模糊语言变量来体现网页上浏览时间的特征,最后从建立的包含所有用户浏览信息的FLaAT(Frequent Link and Access Tree)中挖掘增量式带...挖掘用户偏爱的浏览模式就是从Web日志中发现多数用户偏爱的浏览路径。网页上的浏览时间被转换成一个模糊语言变量来体现网页上浏览时间的特征,最后从建立的包含所有用户浏览信息的FLaAT(Frequent Link and Access Tree)中挖掘增量式带有模糊语言变量的用户偏爱浏览模式。展开更多
文摘速度和效果是聚类算法面临的两大问题.DBSCAN(density based spatial clustering of applications with noise)是典型的基于密度的一种聚类方法,对于大型数据库的聚类实验显示了它在速度上的优越性.提出了一种基于密度的递归聚类算法(recursive density based clustering algorithm,简称RDBC),此算法可以智能地、动态地修改其密度参数.RDBC是基于DBSCAN的一种改进算法,其运算复杂度和DBSCAN相同.通过在Web文档上的聚类实验,结果表明,RDBC不但保留了DBSCAN高速度的优点,而且聚类效果大大优于DBSCAN.