Sheet metal is widely used on auto-bodies, plane-bodies and metal furniture, etc. For instance, a typical auto-body commonly consists of hundreds of sheet metal stamping parts. Because of its complexity of structure a...Sheet metal is widely used on auto-bodies, plane-bodies and metal furniture, etc. For instance, a typical auto-body commonly consists of hundreds of sheet metal stamping parts. Because of its complexity of structure and manufacturing process, auto-bodies inevitably have geometrical variation results from a number of different sources, such as the geometrical variation of stamping parts, the transformation of assembly process parameters and even the improper design concept. As more than 30% quality defects of an auto-body are born from the dimensional deviation of Body-In-White originated during the manufacturing process, effective diagnosis and control of dimensional faults are essential to the continuous improvement of the quality of vehicles. Especially during the period of new car launching or model changing when the assembly process was changed and adjusted frequently. For continuously improving the quality of modern cars, rapid dimensional variation causes identification becomes a challenging but essential work. In this paper, main variation causes of auto-body was firstly been cataloged and analyzed, then, a dimensional variation diagnostic reasoning and decision approach was developed through the combination of data mining and knowledge discovery techniques. This approach is driven by variation pattern identification which can be discovered from the dispersive, isolated massive measured data: Correlation Analysis (CA) and Maximal Tree (MT) methods were applied to extract the large variation group from massive multidimensional measured data, while multivariate statistical analysis (MSA) approach was used to discovery the principle variation pattern. A Decision Tree (DT) approach based on the knowledge of product and assembly process was developed to fulfill the "Hypothesis and Validation" characterized variation causes reasoning procedure. An practical application case with sudden and severe dimension variation on rear end panel in up/down direction was analyzed and successfully solved aided by the devloped variation diagnostic method, which have proved that the approach is effective and efficient.展开更多
文摘Sheet metal is widely used on auto-bodies, plane-bodies and metal furniture, etc. For instance, a typical auto-body commonly consists of hundreds of sheet metal stamping parts. Because of its complexity of structure and manufacturing process, auto-bodies inevitably have geometrical variation results from a number of different sources, such as the geometrical variation of stamping parts, the transformation of assembly process parameters and even the improper design concept. As more than 30% quality defects of an auto-body are born from the dimensional deviation of Body-In-White originated during the manufacturing process, effective diagnosis and control of dimensional faults are essential to the continuous improvement of the quality of vehicles. Especially during the period of new car launching or model changing when the assembly process was changed and adjusted frequently. For continuously improving the quality of modern cars, rapid dimensional variation causes identification becomes a challenging but essential work. In this paper, main variation causes of auto-body was firstly been cataloged and analyzed, then, a dimensional variation diagnostic reasoning and decision approach was developed through the combination of data mining and knowledge discovery techniques. This approach is driven by variation pattern identification which can be discovered from the dispersive, isolated massive measured data: Correlation Analysis (CA) and Maximal Tree (MT) methods were applied to extract the large variation group from massive multidimensional measured data, while multivariate statistical analysis (MSA) approach was used to discovery the principle variation pattern. A Decision Tree (DT) approach based on the knowledge of product and assembly process was developed to fulfill the "Hypothesis and Validation" characterized variation causes reasoning procedure. An practical application case with sudden and severe dimension variation on rear end panel in up/down direction was analyzed and successfully solved aided by the devloped variation diagnostic method, which have proved that the approach is effective and efficient.