期刊文献+
共找到382篇文章
< 1 2 20 >
每页显示 20 50 100
利用模糊关联规则挖掘和遗传算法的工业产品设计优化方法
1
作者 张晴 李丛 高广银 《西南大学学报(自然科学版)》 北大核心 2025年第7期207-218,共12页
在工业产品开发流程的初始阶段,需要处理大量的多维度工业数据。然而,这个过程中的复杂性和不确定性容易导致模糊前端(FFE)问题,增加产品设计的难度。为解决这一问题,避免产品设计中的缺陷,提出一种多层人工智能产品设计方法,该方法结... 在工业产品开发流程的初始阶段,需要处理大量的多维度工业数据。然而,这个过程中的复杂性和不确定性容易导致模糊前端(FFE)问题,增加产品设计的难度。为解决这一问题,避免产品设计中的缺陷,提出一种多层人工智能产品设计方法,该方法结合了多层人工智能技术:大数据分析、基于递归关联规则的模糊推理系统(RAFIS)以及Mamdani模糊推理系统。所提出的方法通过将模糊关联规则挖掘(FARM)和遗传算法(GA)纳入RAFIS,以缩小客户属性和设计参数之间的差距。首先,在FFE阶段,组织数据收集和管理,然后将数据集输入FARM和GA以获取最佳模糊规则和隶属函数。随后,利用这些结果建立用于定制产品设计特征的Mamdani模糊推理系统。通过优化Mamdani推理系统中的参数(包括隶属函数的类型、分区和范围),实现产品定制设计。实验以电动滑板车为例进行应用分析,并采用模糊综合评价方法评估设计方案。结果表明两种设计方案均获得较高满意度,验证了该方法的有效性和可行性。 展开更多
关键词 人工智能 产品设计 模糊关联规则挖掘 遗传算法 大数据分析
在线阅读 下载PDF
基于Apriori算法的供电公司营销数据挖掘系统设计
2
作者 张剑 刘畅 +3 位作者 杨逸 魏昕喆 张浩 王旭 《兵工自动化》 北大核心 2025年第7期97-101,共5页
为解决供电公司营销数据量大,影响数据频繁项集处理效率的问题,设计一种基于Apriori算法的供电公司营销数据挖掘系统。硬件设计通过营销数据挖掘系统物理架构部署,搭建系统硬件环境,实现数据库信息的同步;软件方面设计电力营销数据仓库... 为解决供电公司营销数据量大,影响数据频繁项集处理效率的问题,设计一种基于Apriori算法的供电公司营销数据挖掘系统。硬件设计通过营销数据挖掘系统物理架构部署,搭建系统硬件环境,实现数据库信息的同步;软件方面设计电力营销数据仓库,采用Apriori算法通过映射剪枝处理频繁项集,挖掘关联规则,建立多维数据挖掘模型,实现系统的数据挖掘功能。经实验论证分析,结果表明:该系统在电力负荷预测应用中的预测结果与实际值相差较小,在最小支持度和事务数据量条件下,数据挖掘执行时间分别在2和10 s以下,具有较高的执行效率,说明该系统是可行的。 展开更多
关键词 APRIORI算法 供电公司 服务器 营销数据挖掘系统 关联规则 数据仓库
在线阅读 下载PDF
基于优化FP⁃Growth算法的滑坡频繁因素组合挖掘
3
作者 李佳颖 郝彬超 +4 位作者 王卫东 王智超 曹禄来 韩征 朱崇政 《防灾减灾工程学报》 北大核心 2025年第3期532-541,共10页
滑坡影响因素复杂多样,挖掘滑坡的频繁因素组合能宏观快速地初步判识滑坡易发区域。以四川省凉山彝族自治州内586处滑坡灾害为样本数据,从地质条件、水文条件、地形条件、气象条件和人类工程活动五个方面收集12个滑坡影响因素,基于卡方... 滑坡影响因素复杂多样,挖掘滑坡的频繁因素组合能宏观快速地初步判识滑坡易发区域。以四川省凉山彝族自治州内586处滑坡灾害为样本数据,从地质条件、水文条件、地形条件、气象条件和人类工程活动五个方面收集12个滑坡影响因素,基于卡方检验剔除与滑坡灾害弱相关的影响因素,耦合分析滑坡区域与影响因素区划,针对大数据挖掘算法仅能以历史滑坡次数等离散型变量为挖掘依据的局限性,引入特征参数优化频繁模式树(FPGrowth)算法,使其能以历史滑坡面积和历史滑坡密度等连续型变量为挖掘依据,挖掘滑坡频繁二级因素组合,利用卡方检验与频率比检验挖掘结果准确性。结果表明:基于历史滑坡密度的优化关联规则算法能更好地挖掘滑坡频繁二级因素组合,其中,“高程<1769 m、地表起伏度62~140 m”的区域滑坡最频繁,需要对滑坡灾害重点关注与防治。针对原始关联规则算法仅能以滑坡次数为挖掘依据的局限,优化算法以考虑滑坡范围的影响,深入研究多种影响因素对滑坡的综合作用,为滑坡灾害的快速判识与防灾减灾提供参考。 展开更多
关键词 大数据挖掘技术 优化关联规则算法 FP-GROWTH算法 滑坡影响因素 频繁组合挖掘
在线阅读 下载PDF
基于改进ECLAT算法的混凝土坝变形预测模型
4
作者 赵昕 苏怀智 方正 《中国农村水利水电》 北大核心 2025年第4期58-64,共7页
为提高大坝安全监测数据库的数据挖掘效率,引入改进的ECLAT关联规则算法。利用数据挖掘技术分析处理数量庞大的大坝安全监测数据,并建立大坝坝顶垂直位移预测模型。首先筛选出对大坝坝顶垂直位移的主要影响因素环境温度、坝前水温和坝... 为提高大坝安全监测数据库的数据挖掘效率,引入改进的ECLAT关联规则算法。利用数据挖掘技术分析处理数量庞大的大坝安全监测数据,并建立大坝坝顶垂直位移预测模型。首先筛选出对大坝坝顶垂直位移的主要影响因素环境温度、坝前水温和坝前水位,然后用Eclat算法对预处理后的基本资料进行数据挖掘,筛选出可以用于预测的强关联规则,最后利用坝顶垂直位移对温度变化反应的滞后性,建立坝顶垂直位移预测模型。将本模型应用于某混凝土拱坝中,试验表明该模型的本次预测结果具有一定的可靠性。 展开更多
关键词 大坝安全监测 坝顶垂直位移 关联规则 Eclat算法 数据挖掘
在线阅读 下载PDF
基于轨迹数据的大规模路网交通拥挤时空关联规则挖掘 被引量:9
5
作者 周启帆 刘海旭 +1 位作者 董志鹏 徐银 《系统仿真学报》 CAS CSCD 北大核心 2024年第1期260-271,共12页
提出了K近邻RElim(K neighbor-RElim,KNR)算法和时序K近邻RElim(sequential KNbrRElim,SKNR)算法,利用大规模路网的车辆轨迹数据来挖掘路段拥挤关联规则和拥挤传播时空关联规则。其中KNR算法在RElim算法基础上拓展了空间拓扑约束,可高... 提出了K近邻RElim(K neighbor-RElim,KNR)算法和时序K近邻RElim(sequential KNbrRElim,SKNR)算法,利用大规模路网的车辆轨迹数据来挖掘路段拥挤关联规则和拥挤传播时空关联规则。其中KNR算法在RElim算法基础上拓展了空间拓扑约束,可高效从大规模车辆轨迹数据集中挖掘路网中关联性拥挤易发路段,并量化这些路段间拥挤的关联性强度。而SKNR算法进一步以滑动窗口的形式拓展时间维度,可以挖掘出大规模路网中难以直接观测的拥挤传播现象,并追溯拥挤传播路径。以成都路网和车辆轨迹数据的挖掘结果对所提出的算法进行了说明和验证,结果表明了算法的有效性和鲁棒性。 展开更多
关键词 数据挖掘 关联规则 拥挤传播 轨迹数据 RElim算法
在线阅读 下载PDF
基于Eclat算法的八字门滑坡变形因素关联性分析 被引量:2
6
作者 李明亮 吕梅洁 +1 位作者 侯梦媛 朱昊 《长江科学院院报》 CSCD 北大核心 2024年第6期150-155,共6页
针对滑坡监测数据库数据量大,进行关联规则分析需要多次扫描数据库导致运行时间长的问题,将Eclat关联规则算法引入滑坡监测数据挖掘中,通过K-means聚类法和Eclat算法对八字门滑坡的变形进行了分析。通过综合研究,选择了降雨量监测值和... 针对滑坡监测数据库数据量大,进行关联规则分析需要多次扫描数据库导致运行时间长的问题,将Eclat关联规则算法引入滑坡监测数据挖掘中,通过K-means聚类法和Eclat算法对八字门滑坡的变形进行了分析。通过综合研究,选择了降雨量监测值和库水位监测值中的6种因素进行数据挖掘分析。分别挖掘了3种降雨因子和3种库水位因子与八字门滑坡多测点位移的关联性,并从八字门滑坡时空监测大数据挖掘出的全部关联规则中选择8个具有较高的置信水平的关联规则进行分析,发现降雨和库水位因素影响八字门滑坡运动的有效信息。结果表明,这种数据挖掘方法及其在监测数据研究中的高精度,有望广泛应用于库区堆积滑坡的数据分析和预测。 展开更多
关键词 八字门滑坡 Eclat算法 关联规则 数据挖掘 三峡库区
在线阅读 下载PDF
基于FP-Tree的最大频繁项目集挖掘及更新算法 被引量:164
7
作者 宋余庆 朱玉全 +1 位作者 孙志挥 陈耿 《软件学报》 EI CSCD 北大核心 2003年第9期1586-1592,共7页
挖掘最大频繁项目集是多种数据挖掘应用中的关键问题,之前的很多研究都是采用Apriori类的候选项目集生成-检验方法.然而,候选项目集产生的代价是很高的,尤其是在存在大量强模式和/或长模式的时候.提出了一种快速的基于频繁模式树(FP-tr... 挖掘最大频繁项目集是多种数据挖掘应用中的关键问题,之前的很多研究都是采用Apriori类的候选项目集生成-检验方法.然而,候选项目集产生的代价是很高的,尤其是在存在大量强模式和/或长模式的时候.提出了一种快速的基于频繁模式树(FP-tree)的最大频繁项目集挖掘DMFIA(discover maximum frequent itemsets algorithm)及其更新算法UMFIA(update maximum frequent itemsets algorithm).算法UMFIA将充分利用以前的挖掘结果来减少在更新的数据库中发现新的最大频繁项目集的费用. 展开更多
关键词 数据挖掘 最大频繁项目集 关联规则 频繁模式树 增量式更新
在线阅读 下载PDF
基于频繁模式树的关联规则增量式更新算法 被引量:81
8
作者 朱玉全 孙志挥 季小俊 《计算机学报》 EI CSCD 北大核心 2003年第1期91-96,共6页
研究了大型事务数据库中关联规则的增量式更新问题 ,提出了一种基于频繁模式树的关联规则增量式更新算法 ,以处理最小支持度或事务数据库发生变化后相应关联规则的更新问题 。
关键词 频繁模式树 关联规则 增量式更新算法 数据挖掘 数据库
在线阅读 下载PDF
快速更新频繁项集 被引量:63
9
作者 朱玉全 孙志挥 赵传申 《计算机研究与发展》 EI CSCD 北大核心 2003年第1期94-99,共6页
发现频繁项集是数据挖掘应用中的关键问题 ,发现过程的高花费要求对增量数据挖掘算法进行深入研究 首先分析并指出了增量式更新频繁项集算法的技术难点———寻找新的有效频繁项集 ;其次提出了一种快速的增量式更新频繁项集算法FUFIA ;
关键词 快速更新频繁项集 数据挖掘 关联规则 频繁项集 事务数据库
在线阅读 下载PDF
关联规则挖掘中Apriori算法的研究与改进 被引量:97
10
作者 崔贯勋 李梁 +2 位作者 王柯柯 苟光磊 邹航 《计算机应用》 CSCD 北大核心 2010年第11期2952-2955,共4页
经典的产生频繁项目集的Apriori算法存在多次扫描数据库可能产生大量候选及反复对候选项集和事务进行模式匹配的缺陷,导致了算法的效率较低。为此,对Apriori算法进行以下3方面的改进:改进由k阶频繁项集生成k+1阶候选频繁项集时的连接和... 经典的产生频繁项目集的Apriori算法存在多次扫描数据库可能产生大量候选及反复对候选项集和事务进行模式匹配的缺陷,导致了算法的效率较低。为此,对Apriori算法进行以下3方面的改进:改进由k阶频繁项集生成k+1阶候选频繁项集时的连接和剪枝策略;改进对事务的处理方式,减少Apriori算法中的模式匹配所需的时间开销;改进首次对数据库的处理方法,使得整个算法只扫描一次数据库,并由此提出了改进算法。实验结果表明,改进算法在性能上得到了明显提高。 展开更多
关键词 数据挖掘 关联规则 APRIORI算法 频繁项集 候选项集
在线阅读 下载PDF
基于特征挖掘的电网故障诊断方法 被引量:46
11
作者 李再华 白晓民 +5 位作者 周子冠 许婧 李晓珺 张霖 孟珺遐 朱宁辉 《中国电机工程学报》 EI CSCD 北大核心 2010年第10期16-22,共7页
专家系统在应用方面的主要瓶颈是:规则库的维护;推理的速度和准确度的协调。分析了故障信息序列中必有或特有的信息,提出了基于特征挖掘的关联规则挖掘方法。结合电网故障信息的特征,改进了频繁模式(frequent pattern,FP)–算法:考虑了... 专家系统在应用方面的主要瓶颈是:规则库的维护;推理的速度和准确度的协调。分析了故障信息序列中必有或特有的信息,提出了基于特征挖掘的关联规则挖掘方法。结合电网故障信息的特征,改进了频繁模式(frequent pattern,FP)–算法:考虑了故障信息的特征,如时序和因果关联关系、故障性质、严重故障、稀有故障等因素;增加了规则的"或"逻辑;改进了FP-树的修剪技术。算例表明该算法能够大量减少无效挖掘,推理速度和准确度显著提高,适用于在线诊断。 展开更多
关键词 数据挖掘 关联规则 特征挖掘 频繁模式一算法 故障诊断 专家系统
在线阅读 下载PDF
关联规则的增量式更新算法 被引量:227
12
作者 冯玉才 冯剑琳 《软件学报》 EI CSCD 北大核心 1998年第4期301-306,共6页
关联规则的开采是一个重要的数据开采问题.目前已经提出了许多算法用于高效地发现大规模数据库中的关联规则,而对关联规则维护问题的研究工作却很少.在用户开采关联规则的交互过程中,为了找到真正令其感兴趣的规则,用户将需要不断... 关联规则的开采是一个重要的数据开采问题.目前已经提出了许多算法用于高效地发现大规模数据库中的关联规则,而对关联规则维护问题的研究工作却很少.在用户开采关联规则的交互过程中,为了找到真正令其感兴趣的规则,用户将需要不断调整两个描述用户兴趣程度的阈值:最小支持度和最小可信度.本文提出了两种增量式更新算法——IUA(incrementalupdatingalgorithm)和PIUA(paralelincre-mentalupdatingalgorithm),用来解决这一关联规则高效维护问题. 展开更多
关键词 数据开采 知识发现 关联规则 增量式更新 数据库
在线阅读 下载PDF
负增量式关联规则更新算法 被引量:7
13
作者 张师超 张继连 +1 位作者 陈峰 倪艾玲 《计算机科学》 CSCD 北大核心 2005年第9期153-155,175,共4页
模式维护是数据挖掘中一个具有挑战性的任务。现有的增量式关联规则更新算法主要解决两种情况下的维护问题:一是最小支持度不变,而数据量增加;二是数据量不变,而改变最小支持度。本文提出了一种负增量关联规则更新算法。实验表明,该算... 模式维护是数据挖掘中一个具有挑战性的任务。现有的增量式关联规则更新算法主要解决两种情况下的维护问题:一是最小支持度不变,而数据量增加;二是数据量不变,而改变最小支持度。本文提出了一种负增量关联规则更新算法。实验表明,该算法是有效的。 展开更多
关键词 数据挖掘 关联规则 增量更新算法 模式维护 数据库
在线阅读 下载PDF
一种基于栈变换的高效关联规则挖掘算法 被引量:15
14
作者 惠晓滨 张凤鸣 +1 位作者 虞健飞 牛世民 《计算机研究与发展》 EI CSCD 北大核心 2003年第2期330-335,共6页
在一个模式信息保全引理的基础上 ,提出了一个基于频繁模式栈变换的关联规则挖掘算法FPST ,给出了相应的栈构造和栈变换的算法描述 ,并进行了算法的性能分析和比较试验 。
关键词 栈变换 高效关联规则挖掘算法 数据库 数据挖掘算法 频繁模式 关联规则
在线阅读 下载PDF
多段支持度数据挖掘算法研究 被引量:23
15
作者 李雄飞 苑森淼 +1 位作者 董立岩 全勃 《计算机学报》 EI CSCD 北大核心 2001年第6期661-665,共5页
在基于相联规则的数据挖掘算法中 ,Apriori等算法最为著名 .它分为两个主要步骤 :(1)通过多趟扫描数据库求解出频繁项集 ;(2 )利用频繁项集生成规则 .随后的许多算法都沿用 Apriori中“频繁项集的子集必为频繁项集”的思想 ,在频繁项集 ... 在基于相联规则的数据挖掘算法中 ,Apriori等算法最为著名 .它分为两个主要步骤 :(1)通过多趟扫描数据库求解出频繁项集 ;(2 )利用频繁项集生成规则 .随后的许多算法都沿用 Apriori中“频繁项集的子集必为频繁项集”的思想 ,在频繁项集 Lk- 1 上进行 JOIN运算构成潜在 k项集 Ck.由于数据库和 Ck 的规模较大 ,需要相当大的计算量才能生成频繁项集 .Apriori Tid算法给每个事务增加了一个唯一标识 Tid ,其特点是只扫描一趟数据库 ,其余趟扫描 (如第 k趟扫描 )均在相应的数据集 Ck上进行 .由于数据规模改变不大 ,各算法的效率差别并不明显 .该文提出分段计算支持度的思想 ,是把一个项集的支持度分段计算 ,每一个段记录该项集在相应规模事务中出现的频度 ,从而构成一个支持度向量 .由于有了项集的多段支持度 ,可以推测出该项集能否包含在更大规模的频繁项集中 ,采用这种算法既提高了在扫描数据库过程中的信息获取率 ,又能及时剔除超集不是频繁项集的项集 ,进一步缩减了潜在项集的规模 .在数据集扫描过程中 ,按文中定理 1的思想调整数据集 。 展开更多
关键词 数据挖掘 相联规则 算法 频繁项集 多段支持度 数据库
在线阅读 下载PDF
采掘关联规则的高效并行算法 被引量:37
16
作者 铁治欣 陈奇 俞瑞钊 《计算机研究与发展》 EI CSCD 北大核心 1999年第8期948-953,共6页
采掘关联规则是数据采掘领域的一个重要问题.文中对采掘关联规则问题进行了简单的回顾;给出了一种提高顺序采掘关联规则效率的方法;分析了已有并行采掘关联规则算法的优缺点;设计了一个效率较高的并行采掘关联规则的算法PMAR;... 采掘关联规则是数据采掘领域的一个重要问题.文中对采掘关联规则问题进行了简单的回顾;给出了一种提高顺序采掘关联规则效率的方法;分析了已有并行采掘关联规则算法的优缺点;设计了一个效率较高的并行采掘关联规则的算法PMAR;并与其它相应算法进行了比较.实验证明,算法PMAR是有效的. 展开更多
关键词 数据采掘 关联规则 并行算法 数据库
在线阅读 下载PDF
基于增量数据挖掘的氧量最优值确定 被引量:9
17
作者 牛成林 刘吉臻 +1 位作者 马永光 李建强 《中国电机工程学报》 EI CSCD 北大核心 2009年第35期29-34,共6页
氧量是锅炉运行的重要参数,氧量最优值的合理确定是提高机组运行水平的重要措施。该文提出了基于增量数据挖掘的氧量最优值确定新方法。在机组实际运行数据的基础上采用模糊数值型关联规则挖掘算法挖掘机组的最优氧量及其所有频繁项集,... 氧量是锅炉运行的重要参数,氧量最优值的合理确定是提高机组运行水平的重要措施。该文提出了基于增量数据挖掘的氧量最优值确定新方法。在机组实际运行数据的基础上采用模糊数值型关联规则挖掘算法挖掘机组的最优氧量及其所有频繁项集,同时将增量挖掘引入到关联规则挖掘过程中,提出改进的增量式模糊数值型关联规则挖掘算法,解决机组运行状态发生改变后的最优值增量更新问题,提高了挖掘的效率。通过对某300MW机组运行数据的分析表明,该方法确定的氧量最优值可以降低机组供电煤耗率,提高运行经济性,可用于指导机组优化运行。 展开更多
关键词 增量式关联规则挖掘 数据挖掘 最优氧量 运行优化 节能
在线阅读 下载PDF
基于DDMINER分布式数据库系统中频繁项目集的更新 被引量:15
18
作者 吉根林 杨明 +1 位作者 赵斌 孙志挥 《计算机学报》 EI CSCD 北大核心 2003年第10期1387-1392,共6页
给出了一种分布式数据挖掘系统的体系结构DDMINER ,对分布式数据库系统中频繁项目集的更新问题进行探讨 ,既考虑了数据库中事务增加的情况 ,又考虑了事务删除的情况 ;提出了一种基于DDMINER的局部频繁项目集的更新算法ULF和全局频繁项... 给出了一种分布式数据挖掘系统的体系结构DDMINER ,对分布式数据库系统中频繁项目集的更新问题进行探讨 ,既考虑了数据库中事务增加的情况 ,又考虑了事务删除的情况 ;提出了一种基于DDMINER的局部频繁项目集的更新算法ULF和全局频繁项目集的更新算法UGF .该算法能够产生较少数量的候选频繁项目集 ,在求解全局频繁项目集过程中 ,传送候选局部频繁项目集支持数的通信量为O(n) ;将文章提出的算法用Java语言加以实现 ,并对算法性能进行了研究 ;实验结果表明这些算法是正确、可行的 ,并且具有较高的效率. 展开更多
关键词 分布式数据库系统 频繁项目集 分布式数据挖掘系统 体系结构 DDMINER
在线阅读 下载PDF
关联规则挖掘Apriori算法的研究与改进 被引量:121
19
作者 刘华婷 郭仁祥 姜浩 《计算机应用与软件》 CSCD 2009年第1期146-149,共4页
关联规则挖掘是数据挖掘研究领域中的一个重要任务,旨在挖掘事务数据库中有趣的关联。Apriori算法是关联规则挖掘中的经典算法。然而Apriori算法存在着产生候选项目集效率低和频繁扫描数据等缺点。对Apriori算法的原理及效率进行分析,... 关联规则挖掘是数据挖掘研究领域中的一个重要任务,旨在挖掘事务数据库中有趣的关联。Apriori算法是关联规则挖掘中的经典算法。然而Apriori算法存在着产生候选项目集效率低和频繁扫描数据等缺点。对Apriori算法的原理及效率进行分析,指出了一些不足,并且提出了改进的Apriori_LB算法。该算法基于新的数据结构,改进了产生候选项集的连接方法。在详细阐述了Apriori_LB算法后,对Apriori算法和Apriori_LB算法进行了分析和比较,实验结果表明改进的Apriori_LB算法优于Apriori算法,特别是对最小支持度较小或者项数较少的事务数据库进行挖掘时,效果更加显著。 展开更多
关键词 数据挖掘 关联规则 频繁项集 APRIORI算法
在线阅读 下载PDF
基于Apriori算法的船舶交通事故关联规则分析 被引量:29
20
作者 黄常海 高德毅 +2 位作者 胡甚平 耿鹤军 彭宇 《上海海事大学学报》 北大核心 2014年第3期18-22,共5页
为有效分析船舶交通事故的潜在因果关系,预防和控制事故的发生,采用关联规则方法对相关数据进行有效挖掘,制定船舶交通事故关联规则挖掘流程,建立船舶交通事故关联规则分析模型.基于Apriori算法对船舶交通事故数据进行关联规则分析,挖... 为有效分析船舶交通事故的潜在因果关系,预防和控制事故的发生,采用关联规则方法对相关数据进行有效挖掘,制定船舶交通事故关联规则挖掘流程,建立船舶交通事故关联规则分析模型.基于Apriori算法对船舶交通事故数据进行关联规则分析,挖掘事故间的强关联规则.对所挖掘出的强关联规则进行分析,发现事故致因因素间的潜在关系,并提出事故防范对策以保障海上交通安全. 展开更多
关键词 船舶交通事故 数据挖掘 APRIORI算法 关联规则 海上交通安全
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部