期刊文献+
共找到5,186篇文章
< 1 2 250 >
每页显示 20 50 100
Research on Kalman-filter based multisensor data fusion 被引量:14
1
作者 Chen Yukun Si Xicai Li Zhigang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期497-502,共6页
Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigat... Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigated by researchers, of which Klaman filtering is one of the most important. Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown states of a dynamic system, which has found widespread application in many areas. The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods, then a new method of state fusion is proposed. Finally the simulation results demonstrate the effectiveness of the introduced method. 展开更多
关键词 MULTISENSOR data fusion Kalman filter.
在线阅读 下载PDF
Data fusion of target characteristic in multistatic passive radar 被引量:3
2
作者 CAO Xiaomao YI Jianxin +2 位作者 GONG Ziping RAO Yunhua WAN Xianrong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期811-821,共11页
Radar cross section(RCS)is an important attribute of radar targets and has been widely used in automatic target recognition(ATR).In a passive radar,only the RCS multiplied by a coefficient is available due to the unkn... Radar cross section(RCS)is an important attribute of radar targets and has been widely used in automatic target recognition(ATR).In a passive radar,only the RCS multiplied by a coefficient is available due to the unknown transmitting parameters.For different transmitter-receiver(bistatic)pairs,the coefficients are different.Thus,the recovered RCS in different transmitter-receiver(bistatic)pairs cannot be fused for further use.In this paper,we propose a quantity named quasi-echo-power(QEP)as well as a method for eliminating differences of this quantity among different transmitter-receiver(bistatic)pairs.The QEP is defined as the target echo power after being compensated for distance and pattern propagation factor.The proposed method estimates the station difference coefficients(SDCs)of transmitter-receiver(bistatic)pairs relative to the reference transmitter-receiver(bistatic)pair first.Then,it compensates the QEP and gets the compensated QEP.The compensated QEP possesses a linear relationship with the target RCS.Statistical analyses on the simulated and real-life QEP data show that the proposed method can effectively estimate the SDC between different stations,and the compensated QEP from different receiving stations has the same distribution characteristics for the same target. 展开更多
关键词 data fusion multistatic passive radar radar cross section(RCS) target characteristic
在线阅读 下载PDF
Online residual useful life prediction of large-size slewing bearings A data fusion method 被引量:2
3
作者 封杨 黄筱调 +1 位作者 洪荣晶 陈捷 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期114-126,共13页
To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to ac... To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to achieve online RUL prediction of slewing bearings,which consisted of a reliability based RUL prediction model and a data driven failure rate(FR) estimation model.Firstly,an RUL prediction model was developed based on modified Weibull distribution to build the relationship between RUL and FR.Secondly,principal component analysis(PCA) was introduced to process multi-dimensional life-cycle vibration signals,and continuous squared prediction error(CSPE) and its time-domain features were employed as equipment performance degradation features.Afterwards,an FR estimation model was established on basis of the degradation features and relevant FRs using simplified fuzzy adaptive resonance theory map(SFAM) neural network.Consequently,real-time FR of equipment can be obtained through FR estimation model,and then accurate RUL can be calculated through the RUL prediction model.Results of a slewing bearing life test show that CSPE is an effective indicator of performance degradation process of slewing bearings,and that by combining actual load condition and real-time monitored data,the calculation time is reduced by 87.3%and the accuracy is increased by 0.11%,which provides a potential for online RUL prediction of slewing bearings and other various machineries. 展开更多
关键词 slewing bearing life prediction Weibull distribution failure rate estimation data fusion
在线阅读 下载PDF
A Modified Multi-data Fusion Method Based on D-S Theory 被引量:1
4
作者 姚景顺 杨世兴 《Defence Technology(防务技术)》 SCIE EI CAS 2008年第4期278-280,共3页
The D-S evidential reasoning algorithm is invalid when the evidence is completely contradicted. Therefore,a modified algorithm is proposed based on the elemental correlation and the influence of elemental weights in t... The D-S evidential reasoning algorithm is invalid when the evidence is completely contradicted. Therefore,a modified algorithm is proposed based on the elemental correlation and the influence of elemental weights in the evidence. The modified algorithm is more powerful ability to rectify errors and less computational complexity in the circumstance of multi-evidence fusion processing than those of the D-S evidential reasoning algorithm. 展开更多
关键词 信息处理 D-S推理 计算机 证据
在线阅读 下载PDF
Three dimensional passive underwater target motion analysis using correlated data fusion
5
作者 HU Youfeng, JIAO Bingli (Department of Electrics, Peking University, Beijing 100871, China) 《声学技术》 CSCD 2004年第S1期43-48,共6页
In this paper a new method of passive underwater TMA (target motion analysis) using data fusion is presented. The findings of this research are based on an understanding that there is a powerful sonar system that cons... In this paper a new method of passive underwater TMA (target motion analysis) using data fusion is presented. The findings of this research are based on an understanding that there is a powerful sonar system that consists of many types of sonar but with one own-ship, and that different target parameter measurements can be obtained simultaneously. For the analysis 3 data measurements, passive bearing, elevation and multipath time-delay, are used, which are divided into two groups: a group with estimates of two preliminary target parameter obtained by dealing with each group measurement independently, and a group where correlated estimates are sent to a fusion center where the correlation between two data groups are considered so that the passive underwater TMA is realized. Simulation results show that curves of parameter estimation errors obtained by using the data fusion have fast convergence and the estimation accuracy is noticeably improved. The TMA algorithm presented is verified and is of practical significance because it is easy to be realized in one ship. 展开更多
关键词 PASSIVE localization TARGET motion analysis (TMA) data fusion
在线阅读 下载PDF
Data Fusion Method for Manufacturing Measurement
6
作者 GU Li-chen, ZHANG You-yun, QUO Da-mou (School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期266-,共1页
A data fusion method of online multisensors is prop os ed in this paper based on artificial neuron. First, the dynamic data fusion mode l on artificial neuron is built. Then the calibration of data fusion is discusse ... A data fusion method of online multisensors is prop os ed in this paper based on artificial neuron. First, the dynamic data fusion mode l on artificial neuron is built. Then the calibration of data fusion is discusse d with self-adaptive weighing technique. Finally performance of the method is d emonstrated by an online vibration measurement case. The results show that the f used data are more stable, sensitive, accurate, reliable than that of single sen sor data. 展开更多
关键词 multisensor measures artificial neuron data fus ion fusion system calibration
在线阅读 下载PDF
数字技术赋能新型电力系统安全韧性提升的策略研究 被引量:7
7
作者 陈晓红 张高南 +4 位作者 张乘 陈姣龙 关健 刘泽洪 刘昭成 《中国工程科学》 北大核心 2025年第1期168-179,共12页
构建新型电力系统是落实能源安全战略和“双碳”目标的重要举措,提升安全韧性是新型电力系统安全稳定发展的核心要义,亟需数字技术发挥关键的赋能作用。本文分析了新型电力系统安全韧性的内涵及特征,从极端事件频发、系统结构复杂、多... 构建新型电力系统是落实能源安全战略和“双碳”目标的重要举措,提升安全韧性是新型电力系统安全稳定发展的核心要义,亟需数字技术发挥关键的赋能作用。本文分析了新型电力系统安全韧性的内涵及特征,从极端事件频发、系统结构复杂、多能协调冲突等方面梳理了新型电力系统安全韧性提升面临的挑战;阐述了数字技术对新型电力系统安全韧性提升的赋能作用,凝练了数字技术赋能新型电力系统安全韧性提升存在的主要问题,进一步提出了数字技术赋能新型电力系统安全韧性提升的关键技术体系,涵盖基于人工智能的多模态数据融合技术、基于云-边协同的智能态势感知与预警技术、基于大数据分析的多能协同优化调控技术、基于数字孪生的灾后应急决策技术。注重气候韧性重大工程顶层设计、加强“数字+电力”关键技术研发、建设数据基础设施并完善质量保障机制、优化电力行业复合型人才梯队建设等策略运用,可为新型电力系统建设发展提供理论支撑。 展开更多
关键词 新型电力系统 能源安全 安全韧性 数字技术 多模态数据融合 智能态势感知
在线阅读 下载PDF
融合多源因素回归和ARIMA-LSTM的露天矿地表形变趋势分析 被引量:3
8
作者 李如仁 李梦晨 +1 位作者 葛永权 刘明霞 《金属矿山》 北大核心 2025年第1期186-197,共12页
露天矿山大规模开采引发的地表形变严重威胁了周边基础设施的稳固性及附近民众生命财产安全,形变演化趋势的精准预测对于保障矿山安全运营具有重要意义。针对当前形变监测技术的时空采样率低、成本高,以及数据处理过程中影响因子筛选困... 露天矿山大规模开采引发的地表形变严重威胁了周边基础设施的稳固性及附近民众生命财产安全,形变演化趋势的精准预测对于保障矿山安全运营具有重要意义。针对当前形变监测技术的时空采样率低、成本高,以及数据处理过程中影响因子筛选困难、趋势预测精度欠佳等问题,以辽宁省鞍山市露天矿集中分布区为工程背景,提出了一种融合自回归差分移动平均(Autoregressive Integrated Moving Average,ARIMA)模型—长短期记忆网络(Long Short-Term Memory,LSTM)模型的多源因素融合回归的露天矿地表形变演化趋势分析方法。首先,利用短基线子集干涉测量(Small Baseline Subset Interferometric Synthetic Aperture Radar,SBAS-InSAR)技术开展2020年1月—2022年4月期间研究区地表形变的长时序监测,获取该时段内地表形变时空分布特征。然后,耦合因子分析及灰色关联分析法提取形变主影响因子,基于皮尔逊相关系数(Pearson)验证影响因子的筛选效果,同时考虑地表相邻点位形变的联动效应,构建了多源异构数据融合回归序列。在此基础上,引入自回归差分移动平均(ARIMA)模型改进的长短期记忆网络(LSTM)模型开展形变趋势预测,并采用平均绝对误差(Mean Absolute Error,MAE)、标准误差(Root Mean Square Error,RMSE)以及平均百分比误差(Mean Absolute Percentage Error,MAPE)评估所提方法的预测性能。结果表明:监测期内东鞍山矿东部、大孤山矿中部以及鞍千矿东部沉降相对严重,年均沉降速率最高达166.41 mm/a。耦合因子分析及灰色关联度法提取的影响因子合理可靠,融合高程、地形起伏度及累积降雨量等因子的形变序列更贴合矿区地表真实形变过程。与ARIMA-LSTM模型相比,基于多源因素融合回归模型的预测误差MAE、RMSE、MAPE分别降低了48.0%、16.7%和25.5%,预测精度有所改善且能够有效反映形变累积的整体趋势。 展开更多
关键词 露天矿 形变监测 多源数据融合 形变趋势预测 SBAS-InSAR ARIMA-LSTM
在线阅读 下载PDF
低空遥感与地面传感网络双采集中的数据融合 被引量:1
9
作者 廖世芳 刘长星 包富华 《传感技术学报》 北大核心 2025年第5期900-905,共6页
针对因低空遥感与地面传感网络双采集中数据特征间差异性较强、存在噪声影响,导致数据融合难度大的问题,提出一种低空遥感与地面传感网络双采集中的数据融合方法。采用SLIC算法设定融合区域标准阈值,融合低空遥感与地面传感网络双采集... 针对因低空遥感与地面传感网络双采集中数据特征间差异性较强、存在噪声影响,导致数据融合难度大的问题,提出一种低空遥感与地面传感网络双采集中的数据融合方法。采用SLIC算法设定融合区域标准阈值,融合低空遥感与地面传感网络双采集同属性数据,采集同属性数据集中所有极小值点和极大值点,建立拟合曲线并计算数据点在曲线上的幅值,将幅值较高的数据点视为噪声点,并对其进行去噪处理,不断迭代该过程,直到均匀曲线中的所有噪声点被处理完。分析去噪后数据的一维和二维信息熵值,提取不同维度的特征参数,利用这些特征参数进行数据的趋同性和趋异性融合。仿真数据证明,所提方法数据融合精准度高,能耗始终在0.3 J以下,具有一定应用价值。 展开更多
关键词 地面传感网络 数据融合 信息熵 低空遥感 粒子群搜索算法 欧氏距离
在线阅读 下载PDF
BEV感知学习在自动驾驶中的应用综述 被引量:2
10
作者 黄德启 黄海峰 +1 位作者 黄德意 刘振航 《计算机工程与应用》 北大核心 2025年第6期1-21,共21页
自动驾驶感知模块中作为采集输入的传感器种类不断发展,要使多模态数据统一地表征出来变得愈加困难。BEV感知学习在自动驾驶感知任务模块中可以使多模态数据统一融合到一个特征空间,相比于其他感知学习模型拥有更好的发展潜力。从研究... 自动驾驶感知模块中作为采集输入的传感器种类不断发展,要使多模态数据统一地表征出来变得愈加困难。BEV感知学习在自动驾驶感知任务模块中可以使多模态数据统一融合到一个特征空间,相比于其他感知学习模型拥有更好的发展潜力。从研究意义、空间部署、准备工作、算法发展及评价指标五个方面总结了BEV感知模型具有良好发展潜力的原因。BEV感知模型从框架角度概括为四个系列:Lift-Splat-Lss系列、IPM逆透视转换、MLP视图转换及Transformer视图转换;从输入数据概括为两类:第一类是纯图像特征的输入包括单目摄像头输入和多摄像头输入,第二类在融合数据输入中不仅是简单的点云数据和图像特征的数据融合,还包括了以点云数据为引导或监督的知识蒸馏融合和以引导切片方式去划分高度段的融合。概述了多目标追踪、地图分割、车道线检测及3D目标检测四种自动驾驶任务在BEV感知模型当中的应用,并总结了目前BEV感知学习四个系列框架的缺点。 展开更多
关键词 BEV感知学习 视图转换 多模态数据融合 多目标追踪 地图分割 车道线检测及3D目标检测
在线阅读 下载PDF
面向任务的多源异构医养数据融合框架设计--基于数据可供性视角 被引量:1
11
作者 左美云 姚金玉 《图书情报知识》 北大核心 2025年第4期41-54,101,共15页
[目的/意义]推动医养结合对于发展银发经济和提升老年人满意度都有着重要意义,然而目前医养数据融合仍面临着参与主体数据共享意愿低、数据融合方案探索不够等问题。[研究设计/方法]通过文献调研和理论分析,本文基于可供性-实现理论(Aff... [目的/意义]推动医养结合对于发展银发经济和提升老年人满意度都有着重要意义,然而目前医养数据融合仍面临着参与主体数据共享意愿低、数据融合方案探索不够等问题。[研究设计/方法]通过文献调研和理论分析,本文基于可供性-实现理论(Affordance-Actualization Theory),提出了一种面向任务的多源异构医养数据融合框架,并通过现实世界数据集验证了该框架的可行性。[结论/发现]该框架明晰了医养数据资源的类型以及采集方法,设计了包含基本信息、疾病症状、健康状态和生活照护的老年人医养档案分层体系,并给出六类典型下游任务的数据供给方案。[创新/价值]所提出的医养数据融合框架实现了医疗、养老机构之间的数据采集、融合到服务下游任务的全链路流程,为医养数据融合提供了理论和实践支撑。 展开更多
关键词 数据融合 数据共享 智慧养老 医养结合 可供性-实现理论
在线阅读 下载PDF
基于多数据融合的水电机组劣化趋势概率区间预测 被引量:1
12
作者 王淑青 翟宇胜 +2 位作者 胡文庆 盛世龙 刘东 《水电能源科学》 北大核心 2025年第2期201-205,共5页
传统的基于单一测点的预测模型无法全面反映水电机组的健康状态,这导致难以实现机组劣化状态的准确评估。对此,提出了一种基于多测点数据融合与概率区间预测的水电机组劣化趋势预测模型。首先,选取机组不同测点在各工况下健康运行的数... 传统的基于单一测点的预测模型无法全面反映水电机组的健康状态,这导致难以实现机组劣化状态的准确评估。对此,提出了一种基于多测点数据融合与概率区间预测的水电机组劣化趋势预测模型。首先,选取机组不同测点在各工况下健康运行的数据构成数据集,采用期望最大化—高斯混合模型(EM-GMM)拟合机组健康运行状态下的各监测量的概率密度分布;然后,计算待估样本在给定机组健康状态分布下的负对数似然概率,以作为劣化度指标;其次,采用熵权法计算各测点劣化度指标的权重,通过加权得到综合劣化度指标;最后,为确保预测结果的可靠性,利用多目标遗传算法(MOGA)优化高斯过程回归(GPR)模型代替传统的点预测模型,并使用不同的预测模型进行对比和评估,证明本文提出的模型具有更高的预测精度。 展开更多
关键词 水电机组 多数据融合 EM-GMM健康模型 劣化度指标 熵权法 概率区间预测模型
在线阅读 下载PDF
面向多金属结核资源评价的大数据挖掘与融合
13
作者 李维禄 高思宇 +3 位作者 杨锦坤 韩春花 韦广昊 孔敏 《吉林大学学报(地球科学版)》 北大核心 2025年第1期340-350,共11页
深海多金属结核资源的预测评价已走向数据科学范式,急需开展深层次找矿-示矿大数据挖掘与融合。通过分析讨论深海矿产资源评价的研究进展,以及大数据分析在矿产资源评价领域的应用,探索了面向多金属结核资源评价的大数据挖掘与融合技术... 深海多金属结核资源的预测评价已走向数据科学范式,急需开展深层次找矿-示矿大数据挖掘与融合。通过分析讨论深海矿产资源评价的研究进展,以及大数据分析在矿产资源评价领域的应用,探索了面向多金属结核资源评价的大数据挖掘与融合技术方法,提出了多金属结核资源地质模型知识谱系分析、多源异构资源-环境数据特征信息挖掘、基于大数据空间决策分析的融合集成,以及多金属结核资源评价对比验证等关键技术流程。大数据挖掘与融合技术方法创新性分析常规/非常规资源评价数据及其与矿床的相关关系,构建符合地质约束的大数据空间决策支持推理模型,实现多源异构资源评价信息的特征提取和融合集成,为深海矿产资源评价提供了基于大数据分析的技术解决途径。大数据挖掘与融合技术研究可提高深海矿产资源评价的精度和效率,对深海资源-环境等数据的高效利用、新多金属结核矿区的勘探评价以及其他深海矿种的预测评价具有重要的理论价值和实践意义。 展开更多
关键词 多金属结核 资源评价 深海矿产 大数据 数据挖掘 数据融合
在线阅读 下载PDF
基于淹水面积构建的鄱阳湖水文干旱定量表征及变化特征
14
作者 叶许春 岳恩馨 +1 位作者 李相虎 李传哲 《水科学进展》 北大核心 2025年第2期320-331,共12页
研究探讨洪泛湖泊淹水动态的时空异质性特征及其影响下的水文干旱定量表征,对提高洪泛湖泊生态系统管理实践和洪旱灾害防御能力具有重要意义。采用多源遥感数据和图像融合技术构建了鄱阳湖区2000—2023年间连续的高时空分辨率淹水面积数... 研究探讨洪泛湖泊淹水动态的时空异质性特征及其影响下的水文干旱定量表征,对提高洪泛湖泊生态系统管理实践和洪旱灾害防御能力具有重要意义。采用多源遥感数据和图像融合技术构建了鄱阳湖区2000—2023年间连续的高时空分辨率淹水面积数据,揭示了鄱阳湖淹水动态的时空异质性特征;借助标准化降水指数(SPI)原理提出了基于淹水面积的标准化水文干旱指数,并据此分析了鄱阳湖水文干旱的变化特征。结果表明:(1)鄱阳湖淹水动态时空异质性特征明显,主湖区和碟形湖区淹水面积的年内波动存在差异,在年际变化上呈现出相反趋势;(2)在定量反映鄱阳湖整体水文干旱时,基于站点的标准化水位指数存在较大的不确定性,相对而言,标准化淹水面积指数具有更好的科学性;(3)鄱阳湖水文干旱在时空分布上具有一定的复杂性,极端干旱主要发生在年内的4—10月,且更容易发生在主湖区。遥感大数据和图像融合技术结合可实现对大型洪泛湖泊水文干旱的精细定量研究,促进湖泊资源保护利用和洪旱灾害防治等工作的开展。 展开更多
关键词 水文干旱 淹水面积 洪泛湖泊 数据融合 遥感
在线阅读 下载PDF
多传感器数据融合和改进卷积神经网络的车轮踏面损伤识别方法
15
作者 缪炳荣 徐松源 +2 位作者 吴啸林 王思明 张哲 《振动工程学报》 北大核心 2025年第6期1221-1231,共11页
针对轨旁信号难以完全表征车轮信息和车轮损伤难以定位与量化的问题,提出一种多传感器数据融合算法和改进卷积神经网络(CNN)的车轮踏面缺陷识别方法。基于多体动力学和有限元理论构建车辆-轨道动力学耦合模型。通过布置较少的传感器,进... 针对轨旁信号难以完全表征车轮信息和车轮损伤难以定位与量化的问题,提出一种多传感器数据融合算法和改进卷积神经网络(CNN)的车轮踏面缺陷识别方法。基于多体动力学和有限元理论构建车辆-轨道动力学耦合模型。通过布置较少的传感器,进行多模态特征的提取,对车轮几何特征、车速等参数进行了数据融合的算法优化。基于1D-CNN和2D-CNN提出改进的CNN模型。同时,将频域特征和图像特征进行数据融合,并提出考虑融合特征的CNN算法模型。对重构信号进行缺陷特征提取,并利用改进的CNN融合数据特征实现车轮损伤识别。结合比例车辆试验平台,并利用仿真数据和实际算例验证提出方法的有效性。在不同信号测试集和数据特征下,对CNN、BP神经网络(BPNN)和支持向量机(SVM)的损伤识别效果进行对比分析。结果表明:所提损伤识别模型可以更好地识别车轮踏面缺陷,识别结果与实测结果有很好的一致性;将不同维度的数据特征进行融合,可以表征不同损伤程度下的缺陷并提高识别效果;能够解决轨旁数据不能完整重构车轮状态等问题,为车轮缺陷的在线损伤识别提供技术支撑。 展开更多
关键词 损伤识别 数据融合 机器学习 优化算法 车轮缺陷
在线阅读 下载PDF
基于地质背景的框架-属性耦合建模技术:以锦州市规划区为例
16
作者 李旭光 马天宇 +5 位作者 吴季寰 江山 赵岩 于慧明 邹君 富建华 《地质与勘探》 北大核心 2025年第3期545-555,共11页
三维地质模型是城市空间开发利用过程中不可或缺的可视化数据资源,开发兼具地质背景条件与空间准确性的高精度三维地质模型是当前数字地质领域的重点突破方向。本文研究以锦州市规划区为例,构建了以资料整理、框架刻画、网格剖分和属性... 三维地质模型是城市空间开发利用过程中不可或缺的可视化数据资源,开发兼具地质背景条件与空间准确性的高精度三维地质模型是当前数字地质领域的重点突破方向。本文研究以锦州市规划区为例,构建了以资料整理、框架刻画、网格剖分和属性赋值为基础模块的框架-属性耦合建模技术。将钻孔数据、地质平面图和地表高程作为模型的信息源,采用断层自动拆分聚合算法精细刻画断层面形态,并基于变形场的断裂恢复法生成地层界面,构建地质界面框架模型。在框架内部按地层的地质背景条件选择网格节点排列模式以生成截断矩形网格,并将属性数据粗化到采样点所处的网格节点中。应用变差函数分析已有属性的分布特征,以此匹配插值算法完成模型空间内网格节点的属性赋值。本技术整合并完善了多类型地质信息的层级关系,实现了对地层性质的准确重现,所建立的模型在地质体空间交切关系展示与地质背景表达方面均具备准确性。 展开更多
关键词 三维地质模型 地质背景 多源数据融合 网格剖分 属性插值 锦州
在线阅读 下载PDF
基于Vondrak-Cepek组合滤波和注意力机制加权的时间比对融合算法
17
作者 刘强 孙浩冉 +1 位作者 胡邓华 张爽 《系统工程与电子技术》 北大核心 2025年第2期673-679,共7页
针对卫星双向时间频率传递(two-way satellite time and frequency transfer, TWSTFT)存在周日效应、短期稳定度不高的问题,通过引入基于注意力机制的Transformer权值矩阵,利用Vondrak-Cepek组合滤波的方法将中国科学院国家授时中心(Nat... 针对卫星双向时间频率传递(two-way satellite time and frequency transfer, TWSTFT)存在周日效应、短期稳定度不高的问题,通过引入基于注意力机制的Transformer权值矩阵,利用Vondrak-Cepek组合滤波的方法将中国科学院国家授时中心(National Time Service Center, NTSC)、德国物理技术研究院(Physikalisch-Technische Bundesanstalt, PTB)之间的TWSTFT和全球定位系统(Global Positioning System, GPS)P3码共视法的时间比对链路进行融合,分析融合前后链路的性能指标并与没有周日效应、短期稳定度高的GPS精密单点定位(GPS precise point positioning, GPS PPP)时间比对参考链路进行比较。结果表明,引入注意力机制权值的Vondrak-Cepek组合滤波融合方法与参考链路GPS PPP的标准差为0.310 9 ns,具有改善TWSTFT周日效应、提升链路整体稳定性的作用。 展开更多
关键词 Vondrak-Cepek组合滤波 注意力机制 时间比对 数据融合
在线阅读 下载PDF
基于深度学习的地下实验室多源监测数据融合技术初探
18
作者 王鹏 王驹 +2 位作者 黄树桃 王锡勇 马明清 《地质论评》 北大核心 2025年第S1期389-391,共3页
高放废物地质处置特别是地下实验室研发过程中的多源数据融合挖掘研究具有重要意义(Wang Ju et al.,2018)。然而,目前阶段尚未实现对研发过程中多源数据的融合挖掘与二次应用。针对上述问题,从地下实验室多源监测数据特点出发,在确定地... 高放废物地质处置特别是地下实验室研发过程中的多源数据融合挖掘研究具有重要意义(Wang Ju et al.,2018)。然而,目前阶段尚未实现对研发过程中多源数据的融合挖掘与二次应用。针对上述问题,从地下实验室多源监测数据特点出发,在确定地下实验室多源监测数据模型构建的基础上,结合深度学习技术,初步构建了地下实验室多源监测数据融合技术方法,并初步开展了数据融合设计,为处置库场址评价和安全评价等综合评价工作提供了新的研究思路。 展开更多
关键词 高放废物地质处置 地下实验室 多源监测数据 深度学习 数据融合设计
在线阅读 下载PDF
基于K近邻算法的数据融合与改进图卷积神经网络的电机轴承故障诊断
19
作者 孙丽玲 唐李昱 许伯强 《电机与控制学报》 北大核心 2025年第5期12-18,共7页
为了解决单一类型数据对电机轴承故障诊断准确率不高和图卷积神经网络具有过平滑现象的问题,提出一种多数据融合和改进图卷积神经网络的电机轴承故障诊断方法。首先,通过快速傅里叶变换将电机轴承的振动信号和电机电流信号分别转换为频... 为了解决单一类型数据对电机轴承故障诊断准确率不高和图卷积神经网络具有过平滑现象的问题,提出一种多数据融合和改进图卷积神经网络的电机轴承故障诊断方法。首先,通过快速傅里叶变换将电机轴承的振动信号和电机电流信号分别转换为频域信号;然后,将每一个频率视为一个结点,对应的振动和电流信号视为节点特征,根据K近邻图构造法,将振动信号和电流信号融合成图结构数据;进而,将图数据输入通过添加初始残差连接模块而改进的图卷积神经网络进行训练,从而得到诊断结果。在帕德博恩数据集上,将所提方法和多种模型进行电机轴承故障诊断对比实验,实验结果表明,所提模型的故障识别准确率能达到98.6%,优于对比方法,证明所提数据融合方法与改进图卷积神经网络是有效的。 展开更多
关键词 深度学习 故障诊断 图卷积神经网络 电机轴承 快速傅里叶变换 数据融合 电流数据
在线阅读 下载PDF
遥感影像中种植作物结构分类方法综述
20
作者 甄彤 张威振 李智慧 《计算机工程与应用》 北大核心 2025年第8期35-48,共14页
遥感影像中的农作物种植结构分类具有重要应用价值。综述了遥感影像的主要分类技术,包括光谱特征、纹理特征、时序特征和多源数据融合等方法;重点分析了传统分类方法以及卷积神经网络等深度学习技术在提升分类精度和效率方面的表现。研... 遥感影像中的农作物种植结构分类具有重要应用价值。综述了遥感影像的主要分类技术,包括光谱特征、纹理特征、时序特征和多源数据融合等方法;重点分析了传统分类方法以及卷积神经网络等深度学习技术在提升分类精度和效率方面的表现。研究结果表明,结合多源遥感数据与深度学习模型显著提高了复杂环境下的作物分类效果,尤其在处理多时相数据时表现突出。未来,遥感影像分类将通过算法优化和数据融合,进一步推动精准农业的发展与智能化管理系统的构建。 展开更多
关键词 遥感技术 农作物分类 深度学习 数据融合
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部