期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
基于变分图自编码器的多变量时序数据异常检测
1
作者 尹文萃 谢平 +2 位作者 叶成绪 韩佳新 夏星 《计算机科学》 北大核心 2025年第S1期688-695,共8页
多变量时序数据异常检测指识别多变量时序数据中的异常值。为解决多变量时序数据间的复杂性和内部变量间特征依赖的问题,文中提出了一种基于变分图自编码器的多变量时序数据异常检测方法。首先,使用滑动窗口提取变量嵌入特征,并基于特... 多变量时序数据异常检测指识别多变量时序数据中的异常值。为解决多变量时序数据间的复杂性和内部变量间特征依赖的问题,文中提出了一种基于变分图自编码器的多变量时序数据异常检测方法。首先,使用滑动窗口提取变量嵌入特征,并基于特征相似性构建结构关联关系图,然后将该多变量时序数据间的关联关系通过变分图自编码器进行优化,提高多变量时序数据的结构特征表征能力;其次,通过多头注意力机制提升多变量时序数据不同通道间的特征表示,并和多变量时序数据结构信息进行融合;最后,采用极值理论选取阈值并进行无监督异常检测。实验结果表明,所提模型在SWaT,MSL等数据集上F1分数达到了81.43%和99.67%的结果。 展开更多
关键词 异常检测 多变量时序数据 图结构学习 变分图自编码器
在线阅读 下载PDF
基于时空维度重构的时序数据预测方法
2
作者 姜珊 常乐 尹璐 《北京师范大学学报(自然科学版)》 北大核心 2025年第3期293-299,共7页
针对多维时间序列预测中变量间依赖关系建模不足以及其与时空动态结构适应性差的问题,提出了一种基于时空维度重构的Transformer网络;通过分段编码机制,将同一维度的信息编码为二维向量矩阵,并对该矩阵进行维度倒置处理;引入2阶段注意... 针对多维时间序列预测中变量间依赖关系建模不足以及其与时空动态结构适应性差的问题,提出了一种基于时空维度重构的Transformer网络;通过分段编码机制,将同一维度的信息编码为二维向量矩阵,并对该矩阵进行维度倒置处理;引入2阶段注意力机制,依次对跨时间与跨维度的依赖关系建模,从而有效提升时序表示能力.设计了一个用于捕捉时间序列与空间结构之间动态演变依赖特性的动态图结构模块,并在来自真实世界的5个数据集上对其进行了测试.结果表明,基于时空维度重构的Transformer(STARFormer)模型优于其他基于Transformer的多维时序预测模型. 展开更多
关键词 时空维度重构 时序数据预测 动态图 维度倒置 注意力机制
在线阅读 下载PDF
基于异质信息网络的时空预测算法
3
作者 雷涛 王强 +2 位作者 杨辰 金诚 熊贇 《计算机应用与软件》 北大核心 2025年第1期217-223,240,共8页
时空数据挖掘是数据挖掘领域的一个重要分支,在现实世界中有着大量的应用。与时间序列预测相比,时空预测算法需要同时考虑序列数据的时序关系和空间关系,具有一定的复杂性。为了探索时空数据的本质,有效地捕获复杂的时空关系,提出一种... 时空数据挖掘是数据挖掘领域的一个重要分支,在现实世界中有着大量的应用。与时间序列预测相比,时空预测算法需要同时考虑序列数据的时序关系和空间关系,具有一定的复杂性。为了探索时空数据的本质,有效地捕获复杂的时空关系,提出一种基于异质信息网络的时空预测算法,显式地将时空数据建模为一个异质信息网络,采用时空信息传播路径来表示丰富的时空交互。相较于已有的时空模型利用不同的神经网络来捕获时间和空间的依赖关系,利用元路径将时空关系统一起来,为时空数据挖掘提供一种新的思路。在两个真实世界的公开数据集上进行大量实验,验证了该模型的有效性。 展开更多
关键词 时空数据挖掘 异质信息网络 时空图 信息路径 时间序列
在线阅读 下载PDF
基于GCN-GRU-ATT的云平台资源负载预测
4
作者 赵旭辉 傅颖勋 马礼 《计算机工程与设计》 北大核心 2025年第8期2403-2409,共7页
云计算技术的广泛应用使资源负载预测对云服务的高效稳定运行至关重要,为解决传统方法难以应对动态复杂性的问题,提出了混合预测模型GCN-GRU-ATT。该模型融合了图卷积网络(GCN)和门控循环单元(GRU),并引入注意力机制,有效提升了预测准... 云计算技术的广泛应用使资源负载预测对云服务的高效稳定运行至关重要,为解决传统方法难以应对动态复杂性的问题,提出了混合预测模型GCN-GRU-ATT。该模型融合了图卷积网络(GCN)和门控循环单元(GRU),并引入注意力机制,有效提升了预测准确性和模型适应性。通过深入分析云资源间的复杂拓扑关系并处理资源使用的时间序列数据,GCN-GRU-ATT在资源需求波动大和系统动态复杂的情况下显著优化了资源分配和管理。实验结果表明,与LSTM、RNN、ARIMA-LSTM和CNN-LSTM模型相比,GCN-GRU-ATT在多个关键性能指标上表现优异。 展开更多
关键词 云计算 资源负载预测 图卷积网络 门控循环单元 注意力机制 混合预测模型 动态复杂性 时间序列数据
在线阅读 下载PDF
基于TFG-SVD-1DCNN的液压优先阀智能故障诊断方法
5
作者 何瑶 熊晓燕 +2 位作者 王伟杰 李翔宇 刘会军 《机电工程》 北大核心 2025年第7期1287-1293,共7页
液压优先阀连接在液压泵、蓄能器和油箱增压腔之间,针对其容易受到多路干扰的影响,以及采用传统的液压测试方法对优先阀故障识别精度不足的问题,提出了一种基于时频图结构数据奇异值分解与一维卷积神经网络(TFG-SVD-1DCNN)的液压阀智能... 液压优先阀连接在液压泵、蓄能器和油箱增压腔之间,针对其容易受到多路干扰的影响,以及采用传统的液压测试方法对优先阀故障识别精度不足的问题,提出了一种基于时频图结构数据奇异值分解与一维卷积神经网络(TFG-SVD-1DCNN)的液压阀智能故障诊断方法。首先,采用短时傅里叶变换(STFT)的方法分析了包含故障信息的信号,提取了信号在不同时间段内频率成分的详细信息,得到了时频矩阵;然后,使用时频矩阵在频率维度上的特征构造了图结构数据(GSD),获得了边的连接关系和边的权重等信息,再利用这些信息生成了图结构数据的邻接矩阵,充分保留了每个样本的空间特征;最后,采用奇异值分解(SVD)方法对图结构数据的邻接矩阵进行了降维,将降维之后的主要特征输入到一维卷积神经网络(1D-CNN)中进行了故障分类,并利用仿真数据验证了该方法在优先阀故障诊断方面的性能。研究结果表明:对于优先阀正向无法打开或关断以及反向无法打开或关断4种故障类型,采用智能故障诊断方法所得的平均准确率为99.7%。该研究可以为液压阀故障检测提供一种有效的方法。 展开更多
关键词 液压系统 液压阀 流量优先阀 时频图结构数据奇异值分解 一维卷积神经网络 短时傅里叶变换 图结构数据
在线阅读 下载PDF
结合重构和图预测的多元时序异常检测框架 被引量:4
6
作者 吴彦文 谭溪晨 +3 位作者 葛迪 韩园 熊栩捷 陈宇迪 《计算机工程与应用》 CSCD 北大核心 2024年第13期301-310,共10页
高维时序异常检测一直是智能系统安全领域的重要挑战,主流解决方案通常使用基于数据降维的重构方法和基于时序建模的预测方法,但这些方法没有结合特征间相互影响和特征内时间关联进行学习,且大多使用点估计方法进行预测或重构,从而影响... 高维时序异常检测一直是智能系统安全领域的重要挑战,主流解决方案通常使用基于数据降维的重构方法和基于时序建模的预测方法,但这些方法没有结合特征间相互影响和特征内时间关联进行学习,且大多使用点估计方法进行预测或重构,从而影响了异常检测的准确性。结合预测和重构的优点,考虑序列的整体分布,提出了一种新颖的端到端异常检测框架。设计改进的变分自动编码器重构模块,以学习原始时序数据中的特征内时间关联,同时得到编码后的低维表示。设计估计高斯分布的图神经网络预测模块,结合重构模块的低维表示和原始输入进行图结构学习,以捕捉特征间的结构依赖。模型采用异常评分模块联合重构和预测模块的损失,在考虑序列整体分布的基础上进行时空联合表征。为验证所提出模型的性能,在三个工业数据集上对模型进行了对比实验,与基线模型相比,所提出的模型在F1性能指标上表现良好。 展开更多
关键词 多元时序数据 图神经网络 自编码器 异常检测
在线阅读 下载PDF
基于GAT-Informer的采空区煤自燃温度预测模型
7
作者 贾澎涛 张杰 郭风景 《工矿自动化》 CSCD 北大核心 2024年第11期92-98,108,共8页
现有的煤自燃温度预测模型仅考虑监测数据前后的时间关联性,未考虑监测点之间的空间关系,并存在多步长煤自燃温度预测精度低的问题。针对上述问题,提出了一种基于图注意力网络(GAT)和Informer模型(GAT-Informer)的采空区煤自燃温度预测... 现有的煤自燃温度预测模型仅考虑监测数据前后的时间关联性,未考虑监测点之间的空间关系,并存在多步长煤自燃温度预测精度低的问题。针对上述问题,提出了一种基于图注意力网络(GAT)和Informer模型(GAT-Informer)的采空区煤自燃温度预测模型。首先,采用随机森林回归法和Savitzky-Golay滤波器对采空区沿空侧煤自燃监测数据中的异常值、缺失值和噪声进行处理,并使用Z-score方法对数据进行标准化。其次,采用GAT提取多个监测点煤自燃监测数据间的空间特征。然后,使用Informer模型的编码器对包含空间特征的数据进行编码,利用多头概率稀疏自注意力机制捕捉数据之间的长期依赖关系和时间特征;解码器通过交叉注意力机制与编码器交互,结合编码器提取的全局特征与目标序列的上下文依赖关系,生成特征矩阵并输入全连接层,得到煤自燃温度预测值。最后,对Informer模型输出的煤自燃温度预测值进行反标准化处理,恢复到原始数据尺度,得到最终的预测结果。实验结果表明,相较于循环神经网络(RNN)、长短期记忆网络(LSTM)、门控循环单元(GRU)和Informer模型,GAT-Informer模型在6个监测点上预测24步长煤自燃温度时,均方误差(MSE)分别平均降低了15.70%,22.15%,25.45%,36.49%,平均绝对误差(MAE)分别平均降低了16.01%,14.60%,20.30%,26.27%,表明GAT-Informer模型能有效提高煤自燃温度多步长预测精度。 展开更多
关键词 煤自燃 煤自燃温度预测 多步长时间序列预测 图注意力网络 INFORMER 数据时空特征
在线阅读 下载PDF
基于谱域超图卷积网络的交通流预测模型 被引量:5
8
作者 尹宝才 王竟成 +2 位作者 张勇 胡永利 孙艳丰 《北京工业大学学报》 CAS CSCD 北大核心 2024年第2期152-164,共13页
针对传统图结构难以对节点间的隐含复杂关联关系建模的问题,利用超图对交通流数据进行高阶表示,提出基于谱域超图卷积网络的交通流预测方法。首先,通过动态超边刻画数据特征层面的关系,利用谱域超图卷积,包括基于傅里叶和图小波的超图... 针对传统图结构难以对节点间的隐含复杂关联关系建模的问题,利用超图对交通流数据进行高阶表示,提出基于谱域超图卷积网络的交通流预测方法。首先,通过动态超边刻画数据特征层面的关系,利用谱域超图卷积,包括基于傅里叶和图小波的超图卷积及门控时序卷积,在多尺度上提取交通流的时空特征,实现端到端的节点级交通流预测。然后,采用北京市以及美国加利福尼亚州真实历史数据集进行预测实验。消融实验通过孤立和重构网络模型验证了所提方法的有效性。全时段和早高峰交通流预测的实验结果表明,该方法预测准确率高于目前主流交通流预测模型。 展开更多
关键词 图神经网络 超图理论 多元时序预测 深度学习 大数据分析 智慧交通
在线阅读 下载PDF
图神经网络在异常检测中的应用综述 被引量:4
9
作者 陈佳乐 陈旭 +1 位作者 景永俊 王叔洋 《计算机工程与应用》 CSCD 北大核心 2024年第13期51-65,共15页
图数据常用于表示不同个体之间复杂的关系,例如社交网络、金融网络和微服务网络等。图神经网络(GNN)是一种用于处理图数据的深度学习模型,它可以有效捕获图数据中的结构信息和特征信息。异常检测是指从海量数据中找出不符合预期的数据... 图数据常用于表示不同个体之间复杂的关系,例如社交网络、金融网络和微服务网络等。图神经网络(GNN)是一种用于处理图数据的深度学习模型,它可以有效捕获图数据中的结构信息和特征信息。异常检测是指从海量数据中找出不符合预期的数据。传统异常检测方法在检测图数据时通常不考虑数据之间的关系,而使用GNN进行异常检测的模型可以利用图结构和图特征进行学习,从而提高异常检测的准确性和鲁棒性。从三个方面对GNN在异常检测中的应用进行综述。介绍了GNN的基本框架,分别探讨了GNN在静态图异常检测、动态图异常检测和时序数据异常检测的最新研究进展,深入分析了该领域未来的研究方向。 展开更多
关键词 图神经网络 异常检测 静态图 动态图 时序数据
在线阅读 下载PDF
时空图神经网络在交通流预测研究中的构建与应用综述 被引量:8
10
作者 汪维泰 王晓强 +2 位作者 李雷孝 陶乙豪 林浩 《计算机工程与应用》 CSCD 北大核心 2024年第8期31-45,共15页
交通流量预测是城市交通管理和规划中的关键问题,而传统预测方法在面对数据稀疏性、非线性关系和复杂动态性等挑战时表现不佳。图神经网络是一种基于非欧结构数据的深度学习方法,近年来在各种复杂网络建模和预测任务中得到广泛应用。为... 交通流量预测是城市交通管理和规划中的关键问题,而传统预测方法在面对数据稀疏性、非线性关系和复杂动态性等挑战时表现不佳。图神经网络是一种基于非欧结构数据的深度学习方法,近年来在各种复杂网络建模和预测任务中得到广泛应用。为了应用于交通流量预测领域,提出了时空图神经网络,其能够捕捉空间和时间相关性,相较之前的预测模型有显著进步。对近年来使用时空图神经网络进行交通流量预测的模型进行分析,概述和比较了多种邻接阵的构造方式,然后从空间相关性和时间相关性的角度列举了构建交通流预测模型的常用组件,并对不同的时空融合方式进行了分类和对比;在应用方面,根据时间尺度的不同将时空图神经网络模型分为长期预测、短期预测与兼顾长短期的预测三类,分析了各自的目标与要求,并列举比较了近年来较为突出的新模型。最后,讨论了现有研究的局限性,对相关模型的未来研究做出展望。 展开更多
关键词 智能交通 交通流量预测 时间序列预测 深度学习 图神经网络
在线阅读 下载PDF
深度学习驱动下IaaS云运维异常检测算法的研究进展 被引量:5
11
作者 司佳 梁建峰 +1 位作者 谢硕 邓英俊 《计算机科学》 CSCD 北大核心 2024年第S01期718-725,共8页
异常检测是IaaS云系统运维中的一个关键任务,通过早期预警和提前干预,可有效避免系统崩溃等严重事故的发生。但相较于传统数据中心,IaaS云系统具有较大规模的计算节点,节点拓扑复杂、监测数据量大、缺少标注信息等特点,为IaaS云运维异... 异常检测是IaaS云系统运维中的一个关键任务,通过早期预警和提前干预,可有效避免系统崩溃等严重事故的发生。但相较于传统数据中心,IaaS云系统具有较大规模的计算节点,节点拓扑复杂、监测数据量大、缺少标注信息等特点,为IaaS云运维异常检测带来新的挑战。从深度学习的技术框架出发,分析了异常检测问题面临的难点,调研总结了IaaS云系统下常见异常检测算法和相关技术。面向节点异常和系统异常两类典型问题,对深度学习驱动的解决方法进行调研:面向节点级别异常,重点调研了时间依赖的运维数据下由时序数据驱动的检测算法;面向系统级别异常,重点调研了网络拓扑建模下由图数据驱动的检测算法。最后,提出了数据驱动下IaaS云运维数据异常检测中的新问题与新挑战。 展开更多
关键词 异常检测 IaaS云平台 时序数据 图数据 深度学习 机器学习
在线阅读 下载PDF
交汇航路空中交通流的非线性特征研究 被引量:27
12
作者 王超 郑旭芳 王蕾 《西南交通大学学报》 EI CSCD 北大核心 2017年第1期171-178,共8页
针对空中交通流仿真、预测与控制工作中普遍需要空中交通流时空动态基本特征的问题,从混沌与分形角度对交汇航路交通流量时间序列的非线性特征进行了研究.首先,提出了一种基于航路网络结构的交通流识别方法,构建了不同时间尺度下交通流... 针对空中交通流仿真、预测与控制工作中普遍需要空中交通流时空动态基本特征的问题,从混沌与分形角度对交汇航路交通流量时间序列的非线性特征进行了研究.首先,提出了一种基于航路网络结构的交通流识别方法,构建了不同时间尺度下交通流量时间序列;其次,在相空间重构的基础上,利用最大Lyapunov指数定量判断了交通流中混沌特征的存在,并利用递归图分析了不同时间尺度下交通流量时间序列的混沌特征;最后,通过计算关联维数,研究了不同时间尺度下流量时间序列的分形特征.研究结果表明:不同时间尺度下交通流量时间序列均具有混沌特征;当时间尺度为5 min时,流量时间序列的混沌特征最为显著;随着时间尺度增大,流量时间序列的随机性增强,且对系统复杂性的表现能力变弱. 展开更多
关键词 空中交通流 非线性时间序列 数据挖掘 混沌 分形
在线阅读 下载PDF
基于自适应门控图神经网络的交通流预测 被引量:5
13
作者 王杨 郑津 +1 位作者 刘影 李平 《计算机应用研究》 CSCD 北大核心 2022年第8期2306-2310,共5页
交通流预测是智能交通系统中的重要组成部分,由于交通数据的复杂性,长期而又准确的交通流预测一直是时间序列预测中最具挑战性的任务之一。近年来,研究人员将基于图神经网络的时空图建模方法应用于交通流预测任务,并取得了良好的预测性... 交通流预测是智能交通系统中的重要组成部分,由于交通数据的复杂性,长期而又准确的交通流预测一直是时间序列预测中最具挑战性的任务之一。近年来,研究人员将基于图神经网络的时空图建模方法应用于交通流预测任务,并取得了良好的预测性能。然而,现有的图建模方法仅通过预定义的邻接结构反映道路网络中的空间依赖关系,忽略了各节点之间的序列关联关系对预测的重要性。针对这一局限性,提出了一种自适应门控图神经网络(Ada-GGNN),其核心为通过空间传递模块同时捕获道路网络的空间结构及自适应的时序相关性,并通过门控机制学习节点上的时间序列特征。在两个真实交通网络数据集PeMSD7和Los-loop上的实验结果证明了该模型具有更优越的性能。 展开更多
关键词 交通流预测 时空图 自适应门控图神经网络 时序相关性
在线阅读 下载PDF
实物资金流量表的预测方法研究 被引量:3
14
作者 王惠文 王玉茹 +2 位作者 任若恩 夏棒 王珊珊 《管理科学学报》 CSSCI CSCD 北大核心 2018年第9期1-11,37,共12页
资金流量表是国民经济核算体系中的重要组成部分.然而,由于在编制过程中需要采集大量的数据,通常情况下,很多国家的资金流量表都会有较长时间的滞后.在编制实物资金流量表的延长表时,已有方法通常是基于基期与预测期交易收支结构保持不... 资金流量表是国民经济核算体系中的重要组成部分.然而,由于在编制过程中需要采集大量的数据,通常情况下,很多国家的资金流量表都会有较长时间的滞后.在编制实物资金流量表的延长表时,已有方法通常是基于基期与预测期交易收支结构保持不变的假定条件.然而,经济结构发生显著变化时,该类方法就会失效.基于上述问题,研究弱化模型的假设条件,并提出了新的实物资金流量表预测方法(简称FPTF方法).根据表中元素必须满足的约束条件,该方法通过建立数学模型解除约束,其次基于历史数据的动态趋势,采用适当的时间序列分析方法来预测目标年份的实物资金流量表.通过仿真分析,验证了所提方法的有效性和稳定性.此外,基于中国1992年~2014年的实物资金流量表数据进行实例分析,取得了满意的分析结果. 展开更多
关键词 资金流量表 预测方法 时间序列 成分数据
在线阅读 下载PDF
基于有限穿越可视图的进场航班流量波动特性研究 被引量:4
15
作者 张勰 肖恩媛 +2 位作者 刘宏志 赵嶷飞 王梦琦 《交通运输系统工程与信息》 EI CSCD 北大核心 2022年第6期244-257,共14页
研究空中交通流量的波动特性是设计高效流量管理措施和控制策略的基础,掌握空中交通流量波动特性有利于空域资源配置与流量运行需求之间的均衡匹配。在3种时间粒度上,针对进场航班流量时间序列,一方面从复杂网络整体维度出发,采用有限... 研究空中交通流量的波动特性是设计高效流量管理措施和控制策略的基础,掌握空中交通流量波动特性有利于空域资源配置与流量运行需求之间的均衡匹配。在3种时间粒度上,针对进场航班流量时间序列,一方面从复杂网络整体维度出发,采用有限穿越可视图对时间序列进行建网,利用k-core算法探究航班流量波动特性;另一方面从复杂网络局部维度出发,引入序模体方法,构造有限穿越可视图序模体,利用多元序模体类型转换规律来刻画流量的动态转移模式,进而掌握航班流量波动动态演化规律,为波动模式的预测提供了有效工具。研究结果表明:在有限穿越可视图方法映射得到的网络中,节点所属核阶数可以有效刻画流量波动强度,且与波动强度成正相关关系,即节点所属核阶数越大,波动强度越大,天津机场进场航班流量数据的强波动时段为16:50-17:30;序模体越长,波动特性刻画能力越强,但鉴于受到空中交通混沌特性影响,序模体过长对于流量预测意义不大,推荐使用5节点序模体;波动模式状态转移图在有效刻画流量波动动态演化的同时,也可以计算波动模式的转移概率,3种时间粒度下转移概率分别为12.315%、13.131%和10.638%,为波动模式的预测提供了有效工具。 展开更多
关键词 航空运输 有限穿越可视图 序模体 k阶核 复杂网络 航班流量时间序列
在线阅读 下载PDF
基于混沌理论的局域网流量预测 被引量:1
16
作者 王石 杨怀江 董琰 《北京理工大学学报》 EI CAS CSCD 北大核心 2016年第6期616-619,共4页
局域网业务流中广泛存在自相似为特征的现象,并且自相似现象与混沌现象间存在紧密联系.通过采用局域网流量对应的时间序列分析的方法进行研究,基于相空间重构思想,通过C-C算法计算嵌入维和延迟时间;利用小数据量法计算局域网流量时间序... 局域网业务流中广泛存在自相似为特征的现象,并且自相似现象与混沌现象间存在紧密联系.通过采用局域网流量对应的时间序列分析的方法进行研究,基于相空间重构思想,通过C-C算法计算嵌入维和延迟时间;利用小数据量法计算局域网流量时间序列的最大Lyapunov指数来判断其混沌特性;针对基于最大Lyapunov指数的预测方法中只考虑中心点的最邻近点对预测的决定性作用,而忽略了其邻近点邻域内其他各点对预测结果的影响的特点,提出了基于最大Lyapunov指数的加权邻域预测法;最后通过实测局域网流量预测验证方法的有效性. 展开更多
关键词 混沌时间序列 小数据量法 局域网流量预测
在线阅读 下载PDF
基于LS-SVM的交通流时序数据补齐方法 被引量:2
17
作者 吴芳 王晓原 付宇 《计算机工程与应用》 CSCD 北大核心 2008年第29期232-235,共4页
实时、准确的交通流数据是实现智能运输系统(Intelligent Transportation Systems,简称ITS)的关键,对交通流的控制和诱导有直接影响。由于种种原因,通过交通检测器获得的数据往往是不完整的,存在丢失现象,影响了后续模型的实际应用效果... 实时、准确的交通流数据是实现智能运输系统(Intelligent Transportation Systems,简称ITS)的关键,对交通流的控制和诱导有直接影响。由于种种原因,通过交通检测器获得的数据往往是不完整的,存在丢失现象,影响了后续模型的实际应用效果。针对这一问题,提出一种基于最小二乘支持向量机(Least Squares Support Vector Machines,简称LS-SVM)的交通流时间序列数据补齐模型,利用交通流历史数据对丢失值进行诊断和修补。利用实例仿真验证表明,LS-SVM具有较好的泛化能力和很强的鲁棒性,采用基于LS-SVM的交通流时间序列模型补齐丢失数据能够取得很好的效果。 展开更多
关键词 丢失数据 补齐 最小二乘支持向量机 时间序列 交通流 智能运输系统
在线阅读 下载PDF
EEMD+BiGRU组合模型在短时交通流量预测中的应用 被引量:12
18
作者 张玺君 郝俊 《国防科技大学学报》 EI CAS CSCD 北大核心 2023年第2期73-80,共8页
针对城市交通流随机波动性强、数据中含噪声多导致预测精度下降的问题,提出一种基于集合经验模态分解(ensemble empirical mode decomposition,EEMD)和双向门控循环单元(bidirectional gated recurrent unit,BiGRU)的组合交通流量预测模... 针对城市交通流随机波动性强、数据中含噪声多导致预测精度下降的问题,提出一种基于集合经验模态分解(ensemble empirical mode decomposition,EEMD)和双向门控循环单元(bidirectional gated recurrent unit,BiGRU)的组合交通流量预测模型,有效地提升了短时交通流预测的精度。模型利用EEMD算法对原始数据进行分解,根据分解所得的本征模函数(intrinsic mode function,IMF)分量绘制噪声能量图谱,去除分量中的噪声,并将去噪后的IMF分量作为BiGRU网络的输入进行训练,再将训练所得的结果进行重构加和,得到最终的预测结果。实验结果表明,未舍弃含有噪声的IMF分量进行重构的预测结果,相比于参考文献中提出的EMD+LSTM模型、LSTM模型和EEMD+LSTM模型,其平均绝对百分误差分别优化了42.36%、61.82%和30.95%;舍弃含有噪声的IMF分量后进行重构的预测结果,其平均绝对百分误差相比于将全部IMF分量进行重构优化了56.62%。 展开更多
关键词 智能交通 交通时序数据 集合经验模态分解 双向门控循环单元 交通流预测
在线阅读 下载PDF
交通流时间序列模式相似性度量法 被引量:3
19
作者 弓晋丽 彭贤武 《计算机工程与应用》 CSCD 北大核心 2015年第6期103-107,共5页
针对交通流时间序列具有高维、高噪声的特性,设计了基于趋势变动、拟合优度和最小距离和百分比原则的联机分割算法用于时间序列维约简。对分割后的时间序列进行5元组分段线性表示,并据此定义五种常见的时间序列形状相似性距离。使用分... 针对交通流时间序列具有高维、高噪声的特性,设计了基于趋势变动、拟合优度和最小距离和百分比原则的联机分割算法用于时间序列维约简。对分割后的时间序列进行5元组分段线性表示,并据此定义五种常见的时间序列形状相似性距离。使用分层聚类算法分析它们在不同的交通流状态辨识中的效果,以此确定交通流时间序列的模式相似性度量方法。以上海南北高架东侧间部分路段固定线圈检测数据为例进行了实证分析,最终确定模式距离与欧氏距离组合方式为交通时序模式相似性度量的最佳方法。 展开更多
关键词 交通流 时间序列 模式相似性度量
在线阅读 下载PDF
基于图拉普拉斯变换和极限学习机的时间序列预测算法 被引量:6
20
作者 邹小云 《计算机应用与软件》 北大核心 2021年第4期288-294,共7页
由于时间效率的约束,多元时间序列预测算法往往存在预测准确率不足的问题。对此,提出基于图拉普拉斯变换和极限学习机的时间序列预测算法。基于图拉普拉斯变换对时间序列进行半监督的特征提取,通过散布矩阵将监督特征和无监督特征进行... 由于时间效率的约束,多元时间序列预测算法往往存在预测准确率不足的问题。对此,提出基于图拉普拉斯变换和极限学习机的时间序列预测算法。基于图拉普拉斯变换对时间序列进行半监督的特征提取,通过散布矩阵将监督特征和无监督特征进行融合。设计在线的极限学习机学习算法,仅需要在线更新网络的输出权重矩阵即可完成神经网络的学习。利用提取的特征在线训练极限学习机,实现对多元时间序列的实时预测。基于多个数据集进行仿真实验,结果表明该算法有效地提高了预测准确率。 展开更多
关键词 多元时间序列 人工神经网络 图拉普拉斯变换 极限学习机 数据流预测 特征选择
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部