Product data management (PDM) has been accepted as an important tool for the manufacturing industries. In recent years, more and mor e researches have been conducted in the development of PDM. Their research area s in...Product data management (PDM) has been accepted as an important tool for the manufacturing industries. In recent years, more and mor e researches have been conducted in the development of PDM. Their research area s include system design, integration of object-oriented technology, data distri bution, collaborative and distributed manufacturing working environment, secur ity, and web-based integration. However, there are limitations on their rese arches. In particular, they cannot cater for PDM in distributed manufacturing e nvironment. This is especially true in South China, where many Hong Kong (HK) ma nufacturers have moved their production plants to different locations in Pearl R iver Delta for cost reduction. However, they retain their main offices in HK. Development of PDM system is inherently complex. Product related data cover prod uct name, product part number (product identification), drawings, material speci fications, dimension requirement, quality specification, test result, log size, production schedules, product data version and date of release, special tooling (e.g. jig and fixture), mould design, project engineering in charge, cost spread sheets, while process data includes engineering release, engineering change info rmation management, and other workflow related to the process information. Accor ding to Cornelissen et al., the contemporary PDM system should contains manageme nt functions in structure, retrieval, release, change, and workflow. In system design, development and implementation, a formal specification is nece ssary. However, there is no formal representation model for PDM system. Theref ore a graphical representation model is constructed to express the various scena rios of interactions between users and the PDM system. Statechart is then used to model the operations of PDM system, Fig.1. Statechart model bridges the curr ent gap between requirements, scenarios, and the initial design specifications o f PDM system. After properly analyzing the PDM system, a new distributed PDM (DPDM) system is proposed. Both graphical representation and statechart models are constructed f or the new DPDM system, Fig.2. New product data of DPDM and new system function s are then investigated to support product information flow in the new distribut ed environment. It is found that statecharts allow formal representations to capture the informa tion and control flows of both PDM and DPDM. In particular, statechart offers a dditional expressive power, when compared to conventional state transition diagr am, in terms of hierarchy, concurrency, history, and timing for DPDM behavioral modeling.展开更多
Network economy had changed manufacturing environme nt at all. Open global market offer more choice to customer, and it become changea ble and unpredictable as consumers’ needs become more and more characteristic an ...Network economy had changed manufacturing environme nt at all. Open global market offer more choice to customer, and it become changea ble and unpredictable as consumers’ needs become more and more characteristic an d diversified. Various new technology coming forth and application accelerate th e rapid change of the market. The manufacturing enterprises were compelled t o change their strategy by the variability of the market, and time has been put to the all-important place. There is a need driven by the market to set up a ne twork design and manufacturing mode which have rapid market responsiveness. In order to meet the need for network manufacturing, the organization and manage ment of manufacturing enterprise need a completely innovation, next generation o f manufacturing system must have the character such as digitization, flexibility , agility, customization and globalization and so on. As for an enterprise in au to industry, how to gather together the orders through the distribution, and rap id produce the product which can meet the customer’s need, it is the key that th e contemporary enterprises succeed in the competitive market. The competitive market requires rapid product development. Close cooperation amo ng the designers will accelerate the product development by shortening the devel opment cycle, improving the product quality and reducing the investment. It has been emphasized in the methodology of concurrent engineering (CE). But sometimes those partners are distributed in the world, so there is a need for an importan t technology contribution to collaborative engineering, and supporting distribut ed designers for rapid product development. This paper focuses on a collaborative design system: Product Digit Collaborative Design System (PDCDS). The solution of PDCDS can make it more efficient and rel iable to visit teledata as well as we can get it from local database. It will be ease to get the newest design process information aided by PDCDS, and it will h ave higher efficiency by collaborative work. Comparing with other traditional Pr oduct Data Management (PDM) software system, PDCDS have some new characters such as group, dynamicness, synchronization or asynchronism working mode, and the hi story recorder is needed, and it also surport Webservice.展开更多
Data stream management system (DSMS) provides convenient solutions to the problem of processing continuous queries on data streams.Previous approaches for scheduling these queries and their operators assume that each ...Data stream management system (DSMS) provides convenient solutions to the problem of processing continuous queries on data streams.Previous approaches for scheduling these queries and their operators assume that each operator runs in separate thread or all operators combine in one query plan and run in a single thread.Both approaches suffer from severe drawbacks concerning the thread overhead and the stalls due to expensive operators.To overcome these drawbacks,a novel approach called clustered operators scheduling (COS) is proposed that adaptively clusters operators of the query plan into a number of groups based on their selectivity and computing cost using S-mean clustering.Experimental evaluation is provided to demonstrate the potential benefits of COS scheduling over the other scheduling strategies.COS can provide adaptive,flexible,reliable,scalable and robust design for continuous query processor.展开更多
文摘Product data management (PDM) has been accepted as an important tool for the manufacturing industries. In recent years, more and mor e researches have been conducted in the development of PDM. Their research area s include system design, integration of object-oriented technology, data distri bution, collaborative and distributed manufacturing working environment, secur ity, and web-based integration. However, there are limitations on their rese arches. In particular, they cannot cater for PDM in distributed manufacturing e nvironment. This is especially true in South China, where many Hong Kong (HK) ma nufacturers have moved their production plants to different locations in Pearl R iver Delta for cost reduction. However, they retain their main offices in HK. Development of PDM system is inherently complex. Product related data cover prod uct name, product part number (product identification), drawings, material speci fications, dimension requirement, quality specification, test result, log size, production schedules, product data version and date of release, special tooling (e.g. jig and fixture), mould design, project engineering in charge, cost spread sheets, while process data includes engineering release, engineering change info rmation management, and other workflow related to the process information. Accor ding to Cornelissen et al., the contemporary PDM system should contains manageme nt functions in structure, retrieval, release, change, and workflow. In system design, development and implementation, a formal specification is nece ssary. However, there is no formal representation model for PDM system. Theref ore a graphical representation model is constructed to express the various scena rios of interactions between users and the PDM system. Statechart is then used to model the operations of PDM system, Fig.1. Statechart model bridges the curr ent gap between requirements, scenarios, and the initial design specifications o f PDM system. After properly analyzing the PDM system, a new distributed PDM (DPDM) system is proposed. Both graphical representation and statechart models are constructed f or the new DPDM system, Fig.2. New product data of DPDM and new system function s are then investigated to support product information flow in the new distribut ed environment. It is found that statecharts allow formal representations to capture the informa tion and control flows of both PDM and DPDM. In particular, statechart offers a dditional expressive power, when compared to conventional state transition diagr am, in terms of hierarchy, concurrency, history, and timing for DPDM behavioral modeling.
文摘Network economy had changed manufacturing environme nt at all. Open global market offer more choice to customer, and it become changea ble and unpredictable as consumers’ needs become more and more characteristic an d diversified. Various new technology coming forth and application accelerate th e rapid change of the market. The manufacturing enterprises were compelled t o change their strategy by the variability of the market, and time has been put to the all-important place. There is a need driven by the market to set up a ne twork design and manufacturing mode which have rapid market responsiveness. In order to meet the need for network manufacturing, the organization and manage ment of manufacturing enterprise need a completely innovation, next generation o f manufacturing system must have the character such as digitization, flexibility , agility, customization and globalization and so on. As for an enterprise in au to industry, how to gather together the orders through the distribution, and rap id produce the product which can meet the customer’s need, it is the key that th e contemporary enterprises succeed in the competitive market. The competitive market requires rapid product development. Close cooperation amo ng the designers will accelerate the product development by shortening the devel opment cycle, improving the product quality and reducing the investment. It has been emphasized in the methodology of concurrent engineering (CE). But sometimes those partners are distributed in the world, so there is a need for an importan t technology contribution to collaborative engineering, and supporting distribut ed designers for rapid product development. This paper focuses on a collaborative design system: Product Digit Collaborative Design System (PDCDS). The solution of PDCDS can make it more efficient and rel iable to visit teledata as well as we can get it from local database. It will be ease to get the newest design process information aided by PDCDS, and it will h ave higher efficiency by collaborative work. Comparing with other traditional Pr oduct Data Management (PDM) software system, PDCDS have some new characters such as group, dynamicness, synchronization or asynchronism working mode, and the hi story recorder is needed, and it also surport Webservice.
基金Project(50275150) supported by the National Natural Science Foundation of ChinaProject(20040533035) supported by the National Research Foundation for the Doctoral Program of Higher Education of China
文摘Data stream management system (DSMS) provides convenient solutions to the problem of processing continuous queries on data streams.Previous approaches for scheduling these queries and their operators assume that each operator runs in separate thread or all operators combine in one query plan and run in a single thread.Both approaches suffer from severe drawbacks concerning the thread overhead and the stalls due to expensive operators.To overcome these drawbacks,a novel approach called clustered operators scheduling (COS) is proposed that adaptively clusters operators of the query plan into a number of groups based on their selectivity and computing cost using S-mean clustering.Experimental evaluation is provided to demonstrate the potential benefits of COS scheduling over the other scheduling strategies.COS can provide adaptive,flexible,reliable,scalable and robust design for continuous query processor.