As big data becomes an apparent challenge to handle when building a business intelligence(BI)system,there is a motivation to handle this challenging issue in higher education institutions(HEIs).Monitoring quality in H...As big data becomes an apparent challenge to handle when building a business intelligence(BI)system,there is a motivation to handle this challenging issue in higher education institutions(HEIs).Monitoring quality in HEIs encompasses handling huge amounts of data coming from different sources.This paper reviews big data and analyses the cases from the literature regarding quality assurance(QA)in HEIs.It also outlines a framework that can address the big data challenge in HEIs to handle QA monitoring using BI dashboards and a prototype dashboard is presented in this paper.The dashboard was developed using a utilisation tool to monitor QA in HEIs to provide visual representations of big data.The prototype dashboard enables stakeholders to monitor compliance with QA standards while addressing the big data challenge associated with the substantial volume of data managed by HEIs’QA systems.This paper also outlines how the developed system integrates big data from social media into the monitoring dashboard.展开更多
The assessment and analysis of railway infra structure capacity is an essential task in railway infra structure management carried out to meet the required quality and capacity demand of railway transport. For sustain...The assessment and analysis of railway infra structure capacity is an essential task in railway infra structure management carried out to meet the required quality and capacity demand of railway transport. For sustainable and dependable infrastructure management, it is important to assess railway capacity limitation from the point of view of infrastructure performance. However, the existence of numerous performance indicators often leads to diffused information that is not in a format suitable to support decision making. In this paper, we demonstrated the use of fuzzy inference system for aggregating selected railway infrastructure performance indicators to relate maintenance function to capacity situation. The selected indicators consider the safety, comfort, punctuality and reliability aspects of railway infrastructure performance. The resulting composite indicator gives a reliable quanti fication of the health condition or integrity of railway lines. A case study of the assessment of overall infrastructure performance which is an indication of capacity limitation is presented using indicator data between 2010 and 2012 for five lines on the network of Trafikverket (Swedish Trans port Administration). The results are presented using cus tomised performance dashboard for enhanced visualisation,quick understanding and relevant comparison structure conditions for strategic management. This gives additional information on capacity status and limitation from maintenance management perspective.展开更多
文摘As big data becomes an apparent challenge to handle when building a business intelligence(BI)system,there is a motivation to handle this challenging issue in higher education institutions(HEIs).Monitoring quality in HEIs encompasses handling huge amounts of data coming from different sources.This paper reviews big data and analyses the cases from the literature regarding quality assurance(QA)in HEIs.It also outlines a framework that can address the big data challenge in HEIs to handle QA monitoring using BI dashboards and a prototype dashboard is presented in this paper.The dashboard was developed using a utilisation tool to monitor QA in HEIs to provide visual representations of big data.The prototype dashboard enables stakeholders to monitor compliance with QA standards while addressing the big data challenge associated with the substantial volume of data managed by HEIs’QA systems.This paper also outlines how the developed system integrates big data from social media into the monitoring dashboard.
基金financial support of Trafikverket and Lulea Railway Research Centre
文摘The assessment and analysis of railway infra structure capacity is an essential task in railway infra structure management carried out to meet the required quality and capacity demand of railway transport. For sustainable and dependable infrastructure management, it is important to assess railway capacity limitation from the point of view of infrastructure performance. However, the existence of numerous performance indicators often leads to diffused information that is not in a format suitable to support decision making. In this paper, we demonstrated the use of fuzzy inference system for aggregating selected railway infrastructure performance indicators to relate maintenance function to capacity situation. The selected indicators consider the safety, comfort, punctuality and reliability aspects of railway infrastructure performance. The resulting composite indicator gives a reliable quanti fication of the health condition or integrity of railway lines. A case study of the assessment of overall infrastructure performance which is an indication of capacity limitation is presented using indicator data between 2010 and 2012 for five lines on the network of Trafikverket (Swedish Trans port Administration). The results are presented using cus tomised performance dashboard for enhanced visualisation,quick understanding and relevant comparison structure conditions for strategic management. This gives additional information on capacity status and limitation from maintenance management perspective.