期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Damage mechanism of gamma-irradiated repurposed pultruded glass fibre polyester composite subjected to low-velocity impact using nondestructive techniques
1
作者 Muhammad Imran Najeeb Muhammad Amir Siti Madiha +4 位作者 Agusril Syamsir Mohd Supian Abu Bakar Sapizah Rahim Asyraf Arif Abu Bakar Tabrej Khan 《Defence Technology(防务技术)》 2025年第5期139-151,共13页
Investigating the influence of radiation on glass fibre composites is essential for their use in space and aerospace environment.Gaining insight into the damage mechanisms caused by gamma irradiation,can improve the s... Investigating the influence of radiation on glass fibre composites is essential for their use in space and aerospace environment.Gaining insight into the damage mechanisms caused by gamma irradiation,can improve the safety and resilience of structures.This paper is aimed at investigating the failure mode and damage of gamma-irradiated repurposed pultruded glass fibre-reinforced polyester subjected to lowvelocity impact using three types of non-destructive techniques.Three sets of differently layered configurations(CRC,WCRW,W2CR2C)consisting of chopped(c),roving(r),and weaved(w)fibre-reinforced polyester are applied in this study.Drop hammer test is applied to evaluate the low-impact resistance properties of Gamma-irradiated composite at 100 kGy,500 kGy,and 1000 kGy.Preliminary flexural and hardness tests are conducted to further assess the behaviour of irradiated polymer composites.Further,the damage modes associated with the low-impact test are characterised using infrared thermography,flat panel digital radiography,and microscope observation.The results show that the composites irradiated with various doses display good impact resistance at 20 J,presenting minor damages in the form of dents on the surface.The irradiated CRC and WCRW display best impact resistance at 500 kGy,while W2CR2C at 1000 kGy.This shows that the layering sequence of reinforcement fibre can influence the impact resistance of irradiated composites.Apart from that,the application of non-destructive techniques show different damage mechanisms in the form resin cracks,yarn splitting/fracture,and matrix splitting when the composites are exposed at high and low irradiation doses.These findings offer valuable data for the defence industry,particularly in the areas of repair,maintenance,and the development of new materials. 展开更多
关键词 damage mechanism Low-velocity impact Gamma irradiation Non-destructive methods Composite failure analysis ENERGY
在线阅读 下载PDF
Enhanced damage mechanism of reinforced concrete targets impacted by reactive PELE: An analytical model and experimental validation 被引量:1
2
作者 Jiahao Zhang Mengmeng Guo +3 位作者 Sheng Zhou Chao Ge Pengwan Chen Qingbo Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第12期12-30,共19页
Compared with PELE with inert fillings such as polyethylene and nylon,reactive PELE(RPELE)shows excellent damage effects when impacting concrete targets due to the filling deflagration reaction.In present work,an anal... Compared with PELE with inert fillings such as polyethylene and nylon,reactive PELE(RPELE)shows excellent damage effects when impacting concrete targets due to the filling deflagration reaction.In present work,an analytical model describing the jacket deformation and concrete target damage impacted by RPELE was presented,in which the radial rarefaction and filling deflagration reaction were considered.The impact tests of RPELE on concrete target in the 592-1012 m/s were carried out to verify the analytical model.Based on the analytical model,the angle-length evolution mechanism of the jacket bending-curling deformation was revealed,and the concrete target damage was further analyzed.One can find out that the average prediction errors of the front crater,opening and back crater are 6.8%,8.5%and 7.1%,respectively.Moreover,the effects of radial rarefaction and deflagration were discussed.It was found that the neglect of radial rarefaction overestimates the jacket deformation and concrete target damage,while the deflagration reaction of filling increases the diameter of the front crater,opening and back crater by 25.4%,24.3%and 31.1%,respectively.The research provides a valuable reference for understanding and predicting the jacket deformation and concrete target damage impacted by RPELE. 展开更多
关键词 Reactive PELE Concrete target Jacket deformation Radial rarefaction Enhanced damage mechanism
在线阅读 下载PDF
Mechanical properties and energy mechanism of saturated sandstones 被引量:9
3
作者 NIU Shuang-jian, GE Shuang-shuang +3 位作者 YANG Da-fang DANa Yuan-heng YU Jin ZHANG Sheng 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第6期1447-1463,共17页
The effects of saturation on post-peak mechanical properties and energy features are main focal points for sandstones. To obtain these important attributes, post-peak cyclic loading and unloading tests were conducted ... The effects of saturation on post-peak mechanical properties and energy features are main focal points for sandstones. To obtain these important attributes, post-peak cyclic loading and unloading tests were conducted on sandstone rock samples under natural and saturated states using the RMT-150B rock mechanics testing system. After successful processing of these tests, comparisons of stress-strain, strength, deformation, damage, and degradation of mechanical properties, wave velocity, and energy features of sandstone were conducted between natural and saturated states. The results show that saturation has evident weakening effects on uniaxial cyclic loading and unloading strength and elastic modulus of post-peak fracture sandstone. With the increase of post-peak loading and unloading period, the increases in amplitude of peak axial, lateral, and volumetric strains are all enhanced at approximately constant speed under the natural state. The increase in amplitude of axial peak strain is also enhanced at approximately constant speed, while the amplitudes of lateral and volumetric peak strains increase significantly under the saturated state. Compared with the natural state, the increase in amplitude of saturated samples' peak lateral and volumetric strains, and the post-peak cyclic loading and unloading period all conform to the linearly increasing relationship. Under natural and saturated states, the damage factor (the plastic shear strain) of each rock sample gradually increases with the increase of post-peak cyclic loading and unloading period, and the crack damage stress of each rock sample declines rapidly at first and tends to reach a constant value later with the increase in plastic shear strain. Under natural and saturated states, the wave velocities of rock samples all decrease in the process of post-peak cyclic loading and unloading with the increase in plastic shear strain. The wave velocities of rock samples and plastic shear strain conform to the exponential relationship with a constant. Saturation reduces the total absorption energy, dissipated energy, and elastic strain energy of rock samples. 展开更多
关键词 POST-PEAK SATURATION strength property damage mechanism ENERGY
在线阅读 下载PDF
Statistical damage model for quasi-brittle materials under uniaxial tension 被引量:4
4
作者 陈健云 白卫峰 +1 位作者 范书立 林皋 《Journal of Central South University》 SCIE EI CAS 2009年第4期669-676,共8页
Based on the parallel bar system, combining with the synergetic method, the catastrophe theory and the acoustic emission test, a new motivated statistical damage model for quasi-brittle solid was developed. Taking con... Based on the parallel bar system, combining with the synergetic method, the catastrophe theory and the acoustic emission test, a new motivated statistical damage model for quasi-brittle solid was developed. Taking concrete for instances, the rationality and the flexibility of this model and its parameters-determining method were identified by the comparative analyses between theoretical and experimental curves. The results show that the model can simulate the whole damage and fracture process in the fracture process zone of material when the materials arc exposed to quasi-static uniaxial tensile traction. The influence of the mesoscopic damage mechanism on the macroscopic mechanical properties of quasi-brittle materials is summarized into two aspects, rupture damage and yield damage. The whole damage course is divided into the statistical even damage phase and the local breach phase, corresponding to the two stages described by the catastrophe theory. The two characteristic states, the peak nominal stress state and the critical state are distinguished, and the critical state plays a key role during the whole damage evolution course. 展开更多
关键词 quasi-brittle material damage mechanism MICROSTRUCTURE tensile properties fracture process zone
在线阅读 下载PDF
Damage to aircraft composite structures caused by directed energy system: A literature review 被引量:2
5
作者 Y.X.Zhang Zhi Zhu +1 位作者 Richardson Joseph Isfakul Jamal Shihan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1269-1288,共20页
This paper presents a comprehensive review of the research studies on direct energy system effect on aircraft composite structures to develop a good understanding of state-of-the-art research and development in this a... This paper presents a comprehensive review of the research studies on direct energy system effect on aircraft composite structures to develop a good understanding of state-of-the-art research and development in this area.The review begins with the application of composite materials in the aircraft structures and highlights their particular areas of application and limitations.An overview of directed energy system is given.Some of the commonly used systems in this category are discussed and the working principles of laser energy systems are described.The experimental and numerical studies reported regarding the aircraft composite structures subject to the effect of directed energy systems,especially the laser systems are reviewed in detail.In particularly,the general effects of laser systems and the relevant damage mechanisms against the composite structures are reported.The review draws attention to the recent research and findings in this field and is expected to guide engineers/researchers in future theoretical,numerical,and experimental studies. 展开更多
关键词 AIRCRAFT Composite structures damage mechanisms Direct energy system Laser system EXPERIMENT Numerical studies
在线阅读 下载PDF
Damage mechanics and energy absorption capabilities of natural fiber reinforced elastomeric based bio composite for sacrificial structural applications 被引量:2
6
作者 Vishwas Mahesh Sharnappa Joladarashi Satyabodh M.Kulkarni 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期161-176,共16页
The present study deals with the experimental,finite element(FE)and analytical assessment of low ballistic impact response of proposed flexible‘green’composite make use of naturally available jute and rubber as the ... The present study deals with the experimental,finite element(FE)and analytical assessment of low ballistic impact response of proposed flexible‘green’composite make use of naturally available jute and rubber as the constituents of the composite with stacking sequences namely jute/rubber/jute(JRJ),jute/rubber/rubber/jute(JRRJ)and jute/rubber/jute/rubber/jute(JRJRJ).Ballistic impact tests were carried out by firing a conical projectile using a gas gun apparatus at lower range of ballistic impact regime.The ballistic impact response of the proposed flexible composites are assesses based on energy absorption and damage mechanism.Results revealed that inclusion of natural rubber aids in better energy absorption and mitigating the failure of the proposed composite.Among the three different stacking sequences of flexible composites considered,JRJRJ provides better ballistic performance compared to its counterparts.The damage study reveals that the main mechanism of failure involved in flexible composites is matrix tearing as opposed to matrix cracking in stiff composites indicating that the proposed flexible composites are free from catastrophic failure.Results obtained from experimental,FE and analytical approach pertaining to energy absorption and damage mechanism agree well with each other.The proposed flexible composites due to their exhibited energy absorption capabilities and damage mechanism are best suited as claddings for structural application subjected to impact with an aim of protecting the main structural component from being failed catastrophically. 展开更多
关键词 Flexible composite Ballistic impact Energy absorbed RUBBER damage mechanism
在线阅读 下载PDF
Experimental and numerical study of hypervelocity impact damage on composite overwrapped pressure vessels
7
作者 Yong-Pan Duan Run-Qiang Chi +1 位作者 Bao-Jun Pang Yuan Cai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期58-72,共15页
Ground-based tests are important for studying hypervelocity impact(HVI)damage to spacecraft pressure vessels in the orbital debris environment.We analyzed the damage to composite overwrapped pressure vessels(COPVs)in ... Ground-based tests are important for studying hypervelocity impact(HVI)damage to spacecraft pressure vessels in the orbital debris environment.We analyzed the damage to composite overwrapped pressure vessels(COPVs)in the HVI tests and classified the damage into non-catastrophic damage and catastrophic damage.We proposed a numerical simulation method to further study non-catastrophic damage and revealed the characteristics and mechanisms of non-catastrophic damage affected by impact conditions and internal pressures.The fragments of the catastrophically damaged COPVs were collected after the tests.The crack distribution and propagation process of the catastrophic ruptures of the COPVs were analyzed.Our findings contribute to understanding the damage characteristics and mechanisms of COPVs by HVIs. 展开更多
关键词 Orbital debris Hypervelocity impact Composite overwrapped pressure vessels damage mechanisms
在线阅读 下载PDF
Ablation mechanism and protection of aluminum alloy under high power laser irradiation : A review
8
作者 YIN Jia-heng CAO Yong-zhi +2 位作者 SHANG You-yun CUI Yao-wen LU Li-hua 《Journal of Central South University》 CSCD 2024年第11期4039-4059,共21页
Aluminum alloy is used as the support of final optical assembly because of its excellent mechanical properties,which constitutes th e“skeleton”of high-power laser system.Stray light reflected by weak optical element... Aluminum alloy is used as the support of final optical assembly because of its excellent mechanical properties,which constitutes th e“skeleton”of high-power laser system.Stray light reflected by weak optical elements in high power laser system will fall on the inner wall frame of aluminum alloy,which will cause damage and produce impurity particles,polluting the entire optical system.However,the research on the damage mechanism and protection technology of aluminum alloy under the action of high-power laser system is still in the initial stage.This paper introduces the interaction mechanism between laser and materials,analyzes the laser damage mechanism of aluminum alloy from the perspective of plasma nano metal particle ablation,reviews the progress of laser-induced damage protection of aluminum alloy,and prospects the future research direction of laser absorption and damage protection technology of aluminum alloy under the action of high-energy laser. 展开更多
关键词 laser ablation aluminum alloy damage mechanism laser absorption damage resistance
在线阅读 下载PDF
Damage and fracture behavior and spatio-temporal evolution of acoustic emission of sandstone before and after laser radiation 被引量:1
9
作者 GAO Ming-zhong LIU Jun-jun +6 位作者 LIChun-xiang YANG Ben-gao LI Fei ZHOU Xue-min YANG Lei YANG Zun-dong XIE Jing 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3264-3280,共17页
Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to su... Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to such radiation.The uniaxial compressive strength of sandstone notably decreases by 22.1%–54.7%following exposure to a 750 W laser for 30 s,indicating a substantial weakening effect.Furthermore,the elastic modulus and Poisson ratio of sandstone exhibit an average decrease of 33.7%and 25.9%,respectively.Simultaneously,laser radiation reduces the brittleness of sandstone,increases the dissipated energy proportion,and shifts the failure mode from tensile to tension-shear composite failure.Following laser radiation,both the number and energy of acoustic emission events in the sandstone register a substantial increase,with a more dispersed distribution of these events.In summary,laser radiation induces notable damage to the mechanical properties of sandstone,leading to a substantial decrease in elastic energy storage capacity.Laser rock breaking technology is expected to be applied in hard rock breaking engineering to significantly reduce the difficulty of rock breaking and improve rock breaking efficiency. 展开更多
关键词 laser rock breaking efficient drilling acoustic emission mechanical damage strength reduction
在线阅读 下载PDF
Experimental investigation on anti-penetration performance of polyurea-coated ASTM1045 steel plate subjected to projectile impact 被引量:6
10
作者 Yu-xiang Sun Xin Wang +5 位作者 Chong Ji Chang-xiao Zhao Pei-li Liu Lei Meng Kun Zhang Tao Jiang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1496-1513,共18页
In this study,the anti-penetration performance of polyurea/ASTM1405-steel composite plate subjected to high velocity projectile was analyzed.Two kinds of modified polyurea material(AMMT-053 and AMMT-055)were selected ... In this study,the anti-penetration performance of polyurea/ASTM1405-steel composite plate subjected to high velocity projectile was analyzed.Two kinds of modified polyurea material(AMMT-053 and AMMT-055)were selected and a ballistic impact testing system including speed measuring target system and high-speed camera was designed.This experiment was conducted with a rifle and 5.8 mm projectile to explore the effects by the polyurea coating thickness,the polyurea coating position and the glass-fiber cloth on the anti-penetration performance of polyurea/ASTM1405-steel composite plate.The result showed that the effects of polyurea coating position were different between two types of polyurea,and that the effects of glass-fiber position were disparate between two types of polyurea as well.For AMMT-053 polyurea material,it was better to be on front face than on rear face;whereas for AMMT-055 polyurea,it was better to be on rear surface although the difference was very subtle.Additionally,formulas had been given to describe the relationship between the effectiveness of polyurea and the thickness of polyurea coating.In general,AMMT-055 had better anti-penetration performance than AMMT-053.Furthermore,five typical damage modes including self-healing,crack,local bulge,spallation and local fragmentation were defined and the failure mechanism was analyzed with the results of SHPB test.Additionally,the bonding strength played an important role in the anti-penetration performance of polyurea/steel composite plate. 展开更多
关键词 POLYUREA ASTM1045 steel plate High velocity impact PENETRATION SHPB test damage mechanism
在线阅读 下载PDF
Investigation on the penetration of jacketed rods with striking velocities of 0.9-3.3 km/s into semi-infinite targets 被引量:6
11
作者 Kui Tang Jin-xiang Wang +1 位作者 Hai-ping Song Nan Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第3期476-489,共14页
In this study, a combined experimental, numerical and theoretical investigation is conducted on the penetration of semi-infinite 4340 steel targets by a homogeneous 93 W rod and two types of jacketed rods with strikin... In this study, a combined experimental, numerical and theoretical investigation is conducted on the penetration of semi-infinite 4340 steel targets by a homogeneous 93 W rod and two types of jacketed rods with striking velocities of 0.9-3.3 km/s. The results show that the jacketed rods produced typical“co-erosion” damage at all test velocities, except for the 93 W/1060 Al jacketed rod, which switched from an early “bi-erosion” damage to later “co-erosion” damage at a striking velocity of 936 m/s. However, the homogeneous 93 W rod always forms a large mushroom head during the penetration process. The damage mechanisms of these two types of jacketed rods differ for striking velocities of 0.9-2.0 km/s, but this difference gradually decreases with increased striking velocity. For velocities of 2.0-3.3 km/s, all three types of projectiles exhibit typical hydrodynamic penetration characteristics, and the damage mechanisms of the two types of jacketed rods are almost identical. For the same initial kinetic energy, the penetration performance of the jacketed rods is distinctly superior to that of the homogeneous 93 W rods.Compared with jacket density, jacket strength shows a more significant influence on the damage mechanism and penetration performance of the jacketed rod. Finally, an existing theoretical prediction model of the penetration depth of jacketed rods on semi-infinite targets in the co-erosion mode is modified. It transpires that-in terms of penetration depth-the modified theoretical model is in good agreement with the experimental and numerical observations for 93 W/TC4 and 93 W/1060 Al jacketed rods penetrating semi-infinite 4340 steel targets. 展开更多
关键词 Jacketed rod Semi-infinite target damage mechanism Penetration performance
在线阅读 下载PDF
某超超临界汽轮机转子蠕变-疲劳损伤分析及寿命评估 被引量:3
12
作者 金震杰 纪冬梅 吴凌轩 《汽轮机技术》 北大核心 2022年第2期123-128,共6页
工业用电需求使得汽轮机组进行频繁的启停,针对此情况,建立某1000MW超超临界机组汽轮机高压转子的有限元模型,基于Norton定理模拟其冷态启动和额定工况下的正常运行过程,研究转子在启动及运行过程中的危险点位置、温度和应力的变化规律... 工业用电需求使得汽轮机组进行频繁的启停,针对此情况,建立某1000MW超超临界机组汽轮机高压转子的有限元模型,基于Norton定理模拟其冷态启动和额定工况下的正常运行过程,研究转子在启动及运行过程中的危险点位置、温度和应力的变化规律。根据模拟计算结果,采用CDM(Continuum damage mechanics)模型分析该转子在每年20次冷态启动工况下的疲劳损伤、蠕变损伤及考虑两者交互的蠕变-疲劳损伤,并将结果与美国ASME及法国RCC-MR和DDS标准进行对比,表明该汽轮机转子的寿命在ASME标准下为30年,而在法国RCC-MR和DDS标准下偏于不安全。 展开更多
关键词 汽轮机转子 冷态启动 蠕变-疲劳损伤 Norton定理 CDM(Continuum damage mechanics)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部