期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv8n的煤矿带式输送异物检测研究 被引量:6
1
作者 李宗霖 王广祥 +1 位作者 张立亚 李明亮 《矿业安全与环保》 CAS 北大核心 2024年第4期41-48,共8页
在煤矿带式输送物料过程中,异物的出现可能会引发输送带撕裂或堵塞等安全风险。针对输送带输送物料中异物多样、人工巡检效率低、硬件限制等问题,提出一种基于改进YOLOv8n的轻量化煤矿带式输送异物检测算法:采用GhostNetV2网络对原CSPDa... 在煤矿带式输送物料过程中,异物的出现可能会引发输送带撕裂或堵塞等安全风险。针对输送带输送物料中异物多样、人工巡检效率低、硬件限制等问题,提出一种基于改进YOLOv8n的轻量化煤矿带式输送异物检测算法:采用GhostNetV2网络对原CSPDarkNet53主干网络进行轻量化改进,以减少模型的参数和计算量;整合全局平均池化和全局最大池化思想优化SPPF模块,关注煤矿恶劣环境影响下图像的底层信息;设计了headC2f_CA模块,融入通道注意力机制,以便能够更有效地捕捉不同尺度和位置的异物特征,强化特征信息表达;引入DIoU损失函数,精确反映锚框与预测框之间的相似度,提升模型检测精度。实验结果表明,改进后的模型平均精度均值达88.3%,相比于基线模型YOLOv8n,提升了0.8%,参数量减少了18.51%,计算量减小了20.73%,模型大小缩减了15.87%。该模型有效缓解了边缘设备的硬件限制,同时保障了煤矿安全监测的准确性。 展开更多
关键词 煤矿 带式输送机 输送带异物 部署轻量化 GhostNetV2 SPPF优化 headC2f_CA注意力模块 diou损失函数
在线阅读 下载PDF
基于无人机航拍的绝缘子掉串实时检测研究 被引量:9
2
作者 李登攀 任晓明 颜楠楠 《上海交通大学学报》 EI CAS CSCD 北大核心 2022年第8期994-1003,共10页
由无人机代替人工进行电力绝缘子巡检具有重要意义,针对无人机的上位机算力和存储资源有限的问题,提出一种适用于绝缘子掉串故障检测的实时目标检测改进算法.以YOLOv5s检测网络为基础,将颈部结构中路径聚合网络替换为双向特征金字塔网络... 由无人机代替人工进行电力绝缘子巡检具有重要意义,针对无人机的上位机算力和存储资源有限的问题,提出一种适用于绝缘子掉串故障检测的实时目标检测改进算法.以YOLOv5s检测网络为基础,将颈部结构中路径聚合网络替换为双向特征金字塔网络,以提升特征融合能力;使用DIoU优化损失函数,对模型进行γ系数的通道剪枝和微调,总体上提升检测网络的精度、速度和部署能力;在网络输出处进行图像增强以提升算法可用性.在特殊扩增的绝缘子故障数据集下测试,相较于原始的YOLOv5s算法,改进算法在精度平均值上提升了3.91%,速度提升了25.6%,模型体积下降了59.1%. 展开更多
关键词 无人机 绝缘子掉串 双向特征金字塔网络结构 γ系数剪枝微调 diou损失函数 图像增强
在线阅读 下载PDF
FPN-CenterNet安全帽佩戴检测算法 被引量:6
3
作者 赵江河 王海瑞 吴蕾 《计算机工程与应用》 CSCD 北大核心 2022年第14期114-120,共7页
安全帽作为施工场所工人的安全保障,佩戴与否影响着工人的生命安全。在佩戴检测方面引入深度学习可以高效地提醒工人佩戴安全帽。但由于施工图像中安全帽的图像过小,CenterNet表现得并不好。因此针对这个情况,提出了FPN-CenterNet框架;... 安全帽作为施工场所工人的安全保障,佩戴与否影响着工人的生命安全。在佩戴检测方面引入深度学习可以高效地提醒工人佩戴安全帽。但由于施工图像中安全帽的图像过小,CenterNet表现得并不好。因此针对这个情况,提出了FPN-CenterNet框架;使用ACNet非对称卷积核来对主干网络的特征提取进行增强;使用DIoU损失函数来优化边框预测的准确度。最终修改的算法相较于原始的CenterNet算法mAP提升了4.99个百分点,在GTXGeForce 1050的GPU上的FPS达到25.81。实验结果表明修改之后的算法在安全帽佩戴检测上有良好的准确性和效率。 展开更多
关键词 安全帽佩戴检测 特征金字塔 非对称卷积核 diou损失函数
在线阅读 下载PDF
基于深度学习的生姜种芽快速识别及其朝向判定 被引量:11
4
作者 侯加林 房立发 +2 位作者 吴彦强 李玉华 席芮 《农业工程学报》 EI CAS CSCD 北大核心 2021年第1期213-222,共10页
针对目前生姜机械化播种难以实现“种芽朝向一致”农艺要求的问题,该研究提出了一种基于深度学习的生姜种芽快速识别及其朝向判定的方法。首先,构建生姜数据集。其次,搭建YOLO v3网络进行种芽的识别,包括:使用Mosaic等在线数据增强方式... 针对目前生姜机械化播种难以实现“种芽朝向一致”农艺要求的问题,该研究提出了一种基于深度学习的生姜种芽快速识别及其朝向判定的方法。首先,构建生姜数据集。其次,搭建YOLO v3网络进行种芽的识别,包括:使用Mosaic等在线数据增强方式,增加图像的多样性,解决小数据集训练时泛化能力不足的问题;引入DIoU(Distance Intersection over Union)边框回归损失函数来提高种芽识别回归效果;使用基于IoU的K-means聚类方法,经线性尺度缩放得到9个符合种芽尺寸的先验框,减少了先验框带来的误差。最后进行壮芽的选取及其朝向的判定。测试集中的结果表明,该研究提出的生姜种芽识别网络,平均精度和精准率、召回率的加权调和平均值F1分别达到98.2%和94.9%,采用GPU硬件加速后对生姜种芽的检测速度可达112帧/s,比原有YOLO v3网络的平均精度和F1值分别提升1.5%和4.4%,实现了生姜种芽的快速识别及其朝向的判定,为生姜自动化精确播种提供了技术保证。 展开更多
关键词 图像识别 算法 卷积神经网络 生姜种芽 diou边框回归损失函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部