期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于无导词义消歧的语义查询扩展 被引量:4
1
作者 王瑞琴 孔繁胜 《情报学报》 CSSCI 北大核心 2011年第2期131-137,共7页
一个构造良好的查询是信息检索质量的基本保证,语义查询扩展技术解决了传统信息检索系统不能很好理解用户查询意图的问题,在提高检索查全率的同时保证了检索准确率.本文以查询关键字之间的语义关联为切入点,辅以隐式反馈技术获取消歧上... 一个构造良好的查询是信息检索质量的基本保证,语义查询扩展技术解决了传统信息检索系统不能很好理解用户查询意图的问题,在提高检索查全率的同时保证了检索准确率.本文以查询关键字之间的语义关联为切入点,辅以隐式反馈技术获取消歧上下文,以WordNet本体库和WordNet Domains扩展库作为消歧数据源,使用基于局部上下文和基于图论的两类无导词义消歧方法进行查询关键字到本体概念的映射,最后基于概念词汇关联完成基于语义的查询扩展.综合WordNet本体库和WordNet Domains扩展库中的各项知识源对查询词义进行判定,保证了词义消歧的精度;采用无导词义消歧实现查询词义的快速判定,保证了信息检索的实时性;根据查询关键词的多寡分别提出两类消歧方法,满足了各种查询需求. 展开更多
关键词 词义消歧 语义查询扩展 Word Sense disambiguation Based Query Expansion WordNet 信息检索系统 消歧方法 上下文 扩展库 关键字 本体库 检索准确率 语义关联 隐式反馈 快速判定 检索质量 技术解决 技术获取 基于语义
在线阅读 下载PDF
Label correlation for partial label learning
2
作者 GE Lingchi FANG Min +1 位作者 LI Haikun CHEN Bo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1043-1051,共9页
Partial label learning aims to learn a multi-class classifier,where each training example corresponds to a set of candidate labels among which only one is correct.Most studies in the label space have only focused on t... Partial label learning aims to learn a multi-class classifier,where each training example corresponds to a set of candidate labels among which only one is correct.Most studies in the label space have only focused on the difference between candidate labels and non-candidate labels.So far,however,there has been little discussion about the label correlation in the partial label learning.This paper begins with a research on the label correlation,followed by the establishment of a unified framework that integrates the label correlation,the adaptive graph,and the semantic difference maximization criterion.This work generates fresh insight into the acquisition of the learning information from the label space.Specifically,the label correlation is calculated from the candidate label set and is utilized to obtain the similarity of each pair of instances in the label space.After that,the labeling confidence for each instance is updated by the smoothness assumption that two instances should be similar outputs in the label space if they are close in the feature space.At last,an effective optimization program is utilized to solve the unified framework.Extensive experiments on artificial and real-world data sets indicate the superiority of our proposed method to state-of-art partial label learning methods. 展开更多
关键词 pattern recognition partial label learning label correlation disambiguation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部