物联网(Internet of Things,IoT)技术的发展给工业界和日常生活带来便利的同时,海量易受到各种攻击和破坏的IoT设备也降低了分布式拒绝服务(Distributed Denial of Service,DDoS)攻击发起的成本,使被攻击方无法响应正常用户访问.为了在...物联网(Internet of Things,IoT)技术的发展给工业界和日常生活带来便利的同时,海量易受到各种攻击和破坏的IoT设备也降低了分布式拒绝服务(Distributed Denial of Service,DDoS)攻击发起的成本,使被攻击方无法响应正常用户访问.为了在物联网边缘中快速、准确地完成DDoS攻击检测,弥补现有方法资源开销大、不精确的缺陷,本文提出了一种基于轻量化卷积神经网络(Lightweight Convolutional Neural Networks,LCNN)的DDoS检测方法.面向物联网流量特性,方法首先提取包级特征和经冗余分析筛选得到的流级特征.之后设计了低参数和运算量的卷积神经网络LCNN,最后基于变维后的特征,快速检测定位攻击.实验结果表明,方法检测准确率达99.4%.同时LCNN在FPGA中能够以较少的资源消耗,保证在1ms时间内完成对一条流的推理判断.展开更多
网络流量分类在网络管理和安全中至关重要,尤其是精准识别分布式拒绝服务(Distributed Denial of Service,DDoS)攻击这一威胁。DDoS攻击会导致服务中断、资源耗尽和经济损失,严重影响服务质量(QoS)。尽管集中式模型在DDoS攻击检测中取...网络流量分类在网络管理和安全中至关重要,尤其是精准识别分布式拒绝服务(Distributed Denial of Service,DDoS)攻击这一威胁。DDoS攻击会导致服务中断、资源耗尽和经济损失,严重影响服务质量(QoS)。尽管集中式模型在DDoS攻击检测中取得了一定成效,但在实际应用中存在挑战:数据分布不均、数据集中传输困难,以及异构设备和动态网络环境的限制,从而难以实现实时检测。为应对这些问题,本文提出了一种基于异步个性化联邦学习的DDoS攻击检测与缓解方法AdaPerFed(Adaptive Personalized Federated Learning)。首先,通过定制的ResNet架构高效处理一维流量数据,并集成Net模块增强特征提取能力。然后,通过软件定义网络(SDN,Software-Defined Networking)模拟复杂动态网络环境,并引入完善的缓解系统应对多样化攻击场景。个性化联邦学习框架有效处理了非独立同分布(Non-IID,Non-Independent and Identically Distributed)数据问题,并通过异步学习机制适应异构设备和网络条件的差异,提升了系统的鲁棒性和扩展性。实验结果表明,AdaPerFed在CICDDoS2019、CIC-IDS2017和InSDN等数据集上均优于其他联邦学习算法,在不同客户端数量下展现出更快的收敛速度和更强的鲁棒性,DDoS检测准确率提升了15%~20%。消融实验进一步验证了个性化聚合模块对系统性能的显著提升。展开更多
分布式拒绝服务(distributed denial of service,DDoS)攻击是重要的安全威胁,网络速度的不断提高给传统的检测方法带来了新的挑战。以Spark等为代表的大数据处理技术,给网络安全的高速检测带来了新的契机。提出了一种基于Spark Streamin...分布式拒绝服务(distributed denial of service,DDoS)攻击是重要的安全威胁,网络速度的不断提高给传统的检测方法带来了新的挑战。以Spark等为代表的大数据处理技术,给网络安全的高速检测带来了新的契机。提出了一种基于Spark Streaming框架的自适应实时DDoS检测防御技术,通过对滑动窗口内源簇进行分组,并根据与各分组内源簇比例的偏差统计,检测出DDoS攻击流量。通过感知合法的网络流量,实现了对DDoS攻击的自适应快速检测和有效响应。实验结果表明,该技术可极大地提升检测能力,为保障网络服务性能和安全检测的可扩展性提供了一种可行的解决方案。展开更多
分布式拒绝服务(distributed denial of service,简称DDoS)攻击是当今互联网的重要威胁之一.基于攻击包所处网络层次,将DDoS攻击分为网络层DDoS攻击和应用层DDoS攻击,介绍了两类攻击的各种检测和控制方法,比较了处于不同部署位置控制方...分布式拒绝服务(distributed denial of service,简称DDoS)攻击是当今互联网的重要威胁之一.基于攻击包所处网络层次,将DDoS攻击分为网络层DDoS攻击和应用层DDoS攻击,介绍了两类攻击的各种检测和控制方法,比较了处于不同部署位置控制方法的优劣.最后分析了现有检测和控制方法应对DDoS攻击的不足,并提出了DDoS过滤系统的未来发展趋势和相关技术难点.展开更多
文摘物联网(Internet of Things,IoT)技术的发展给工业界和日常生活带来便利的同时,海量易受到各种攻击和破坏的IoT设备也降低了分布式拒绝服务(Distributed Denial of Service,DDoS)攻击发起的成本,使被攻击方无法响应正常用户访问.为了在物联网边缘中快速、准确地完成DDoS攻击检测,弥补现有方法资源开销大、不精确的缺陷,本文提出了一种基于轻量化卷积神经网络(Lightweight Convolutional Neural Networks,LCNN)的DDoS检测方法.面向物联网流量特性,方法首先提取包级特征和经冗余分析筛选得到的流级特征.之后设计了低参数和运算量的卷积神经网络LCNN,最后基于变维后的特征,快速检测定位攻击.实验结果表明,方法检测准确率达99.4%.同时LCNN在FPGA中能够以较少的资源消耗,保证在1ms时间内完成对一条流的推理判断.
文摘分布式拒绝服务(distributed denial of service,DDoS)攻击是重要的安全威胁,网络速度的不断提高给传统的检测方法带来了新的挑战。以Spark等为代表的大数据处理技术,给网络安全的高速检测带来了新的契机。提出了一种基于Spark Streaming框架的自适应实时DDoS检测防御技术,通过对滑动窗口内源簇进行分组,并根据与各分组内源簇比例的偏差统计,检测出DDoS攻击流量。通过感知合法的网络流量,实现了对DDoS攻击的自适应快速检测和有效响应。实验结果表明,该技术可极大地提升检测能力,为保障网络服务性能和安全检测的可扩展性提供了一种可行的解决方案。
文摘分布式拒绝服务(distributed denial of service,简称DDoS)攻击是当今互联网的重要威胁之一.基于攻击包所处网络层次,将DDoS攻击分为网络层DDoS攻击和应用层DDoS攻击,介绍了两类攻击的各种检测和控制方法,比较了处于不同部署位置控制方法的优劣.最后分析了现有检测和控制方法应对DDoS攻击的不足,并提出了DDoS过滤系统的未来发展趋势和相关技术难点.