为了解决大型回转支承背景噪声大,特征信号微弱,寿命状态难以识别等问题,提出了一种基于改进深度信念网络(Deep Belief Network,DBN)的回转支承寿命状态识别方法。DBN网络拥有强大的深度学习能力,能够有效挖掘回转支承运行状态信息,解...为了解决大型回转支承背景噪声大,特征信号微弱,寿命状态难以识别等问题,提出了一种基于改进深度信念网络(Deep Belief Network,DBN)的回转支承寿命状态识别方法。DBN网络拥有强大的深度学习能力,能够有效挖掘回转支承运行状态信息,解决了传统浅层网络过度依赖特征提取效果和识别精度不高的问题。在DBN学习训练中,采用新的优化学习方法FEPCD(Free Energy in Persistent Contrastive Divergence),解决了DBN在长期学习中近似和分类能力下降的问题。然后利用自主研发试验台的试验数据对所提方法的优越性进行验证。将改进的DBN算法与浅层分类算法的识别结果进行比较。结果表明改进DBN网络比原始DBN网络和浅层算法能更精确反映回转支承寿命特征,所提方法具有稳定性和智能性的特点。展开更多
遥感图像分类是地理信息系统(geographic information system,GIS)的关键技术,对城市规划与管理起到十分重要的作用.近年来,深度学习成为机器学习领域的一个新兴研究方向.深度学习采用模拟人脑多层结构的方式,对数据从低层到高层渐进地...遥感图像分类是地理信息系统(geographic information system,GIS)的关键技术,对城市规划与管理起到十分重要的作用.近年来,深度学习成为机器学习领域的一个新兴研究方向.深度学习采用模拟人脑多层结构的方式,对数据从低层到高层渐进地进行特征提取,从而发掘数据在时间与空间上的规律,进而提高分类的准确性.深度信念网络(deep belief network,DBN)是一种得到广泛研究与应用的深度学习模型,它结合了无监督学习和有监督学习的优点,对高维数据具有较好的分类能力.提出一种基于DBN模型的遥感图像分类方法,并利用RADARSAT-2卫星6d的极化合成孔径雷达(synthetic aperture radar,SAR)图像进行了验证.实验表明,与支持向量机(SVM)及传统的神经网络(NN)方法相比,基于DBN模型的方法可以取得更好的分类效果.展开更多
文摘为了解决大型回转支承背景噪声大,特征信号微弱,寿命状态难以识别等问题,提出了一种基于改进深度信念网络(Deep Belief Network,DBN)的回转支承寿命状态识别方法。DBN网络拥有强大的深度学习能力,能够有效挖掘回转支承运行状态信息,解决了传统浅层网络过度依赖特征提取效果和识别精度不高的问题。在DBN学习训练中,采用新的优化学习方法FEPCD(Free Energy in Persistent Contrastive Divergence),解决了DBN在长期学习中近似和分类能力下降的问题。然后利用自主研发试验台的试验数据对所提方法的优越性进行验证。将改进的DBN算法与浅层分类算法的识别结果进行比较。结果表明改进DBN网络比原始DBN网络和浅层算法能更精确反映回转支承寿命特征,所提方法具有稳定性和智能性的特点。