期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于1DCNN和D-S多信息融合的光伏系统直流母线串联电弧故障检测 被引量:3
1
作者 李岩 刘鑫月 +2 位作者 乔俊杰 王毛桃 王鹏 《电工电能新技术》 CSCD 北大核心 2024年第5期58-67,共10页
直流母线是光伏系统输出能源的主干道,由于长期曝晒、风化等作用,电缆、连接器等组件劣化,光伏系统直流母线中发生电弧的可能性急剧上升,极易引发火灾、触电等事故。在光伏系统中,串联电弧故障将使回路电流下降,传统的过流保护无法识别... 直流母线是光伏系统输出能源的主干道,由于长期曝晒、风化等作用,电缆、连接器等组件劣化,光伏系统直流母线中发生电弧的可能性急剧上升,极易引发火灾、触电等事故。在光伏系统中,串联电弧故障将使回路电流下降,传统的过流保护无法识别。因此,本文提出基于深度学习和证据理论(D-S)的方法来识别串联电弧故障,该方法基于并联电容器电流和电压信号,采用一维卷积神经网络(1DCNN)对检测数据进行电弧识别;在此基础上将基于单个传感数据的识别结果作为证据,运用D-S多信息合成法则计算得到信度分配,最后利用决策规则判断是否发生串联电弧故障。搭建多参数可调模型获取数据进行测试,结果表明:使用1DCNN识别方法,基于并联电容器电流和电压信号的串联电弧识别准确率分别为97.19%和94.98%,而基于1DCNN和D-S多信息融合的光伏系统直流串联电弧故障检测的识别准确率可提升至99%以上。 展开更多
关键词 光伏系统 1DCNN 串联电弧故障 d-s多元信息融合 故障检测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部