期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于局部感受野扩张D-MobileNet模型的图像分类方法 被引量:6
1
作者 王威 邹婷 王新 《计算机应用研究》 CSCD 北大核心 2020年第4期1261-1264,1270,共5页
针对轻量级深度神经网络MobileNet会减少分类准确率的问题,将空洞卷积核引入MobileNet模型的某一卷积层中,提出一种基于局部感受野扩张的D-MobileNet模型。该模型根据空洞卷积核所在位置的不同分为三种结构,在不增加参数数量的同时能够... 针对轻量级深度神经网络MobileNet会减少分类准确率的问题,将空洞卷积核引入MobileNet模型的某一卷积层中,提出一种基于局部感受野扩张的D-MobileNet模型。该模型根据空洞卷积核所在位置的不同分为三种结构,在不增加参数数量的同时能够扩大该层卷积核的局部感受野,提高分类精度。实验在Caltech-101数据集、Caltech-256数据集以及图宾根大学动物分类数据库上进行,结果表明,D-MobileNet模型可获得比MobileNet更好的分类准确率,最多可以提高2%。 展开更多
关键词 图像分类 深度神经网络 MobileNet 空洞卷积 d-mobilenet
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部