期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
面向自动紧急转向场景的自动驾驶测试用例生成方法 被引量:2
1
作者 饶聪波 赵津 +1 位作者 刘畅 孙念怡 《现代电子技术》 北大核心 2024年第16期130-136,共7页
为了验证智能汽车的安全性,需要生成大量用例用于系统测试。对此,提出一种基于临界安全距离模型的用例生成方法,该方法用于生成测试自动紧急转向(AES)系统的场景用例。首先通过对临界安全距离模型进行分析,识别出影响行车安全的关键参数... 为了验证智能汽车的安全性,需要生成大量用例用于系统测试。对此,提出一种基于临界安全距离模型的用例生成方法,该方法用于生成测试自动紧急转向(AES)系统的场景用例。首先通过对临界安全距离模型进行分析,识别出影响行车安全的关键参数;然后,从自然驾驶数据集High D中提取这些参数,并采用核密度估计方法构建AES测试场景的描述模型。使用蒙特卡洛(MC)方法对描述模型进行抽样,生成与自然驾驶行为参数特征相符的测试用例。同时,为了解决MC方法生成用例中风险及危险场景匮乏的问题,进一步引入重要性抽样(IS)方法,以提升风险用例和危险用例的生成比例。实验结果表明:所提方法能够高效地生成用于AES系统的测试用例;与MC方法相比,IS方法在风险用例上平均增加207.9%,在危险用例上平均增加272.6%,从而显著提高了测试效率。 展开更多
关键词 自动紧急转向 自动驾驶 测试用例 临界安全距离 High d数据集 核密度估计 蒙特卡洛法 重要性抽样
在线阅读 下载PDF
折扣{0-1}背包问题粒子群算法的贪婪修复策略探究 被引量:2
2
作者 代祖华 周斌 +1 位作者 龙玉晶 王宗泉 《计算机应用研究》 CSCD 北大核心 2022年第8期2363-2368,共6页
群智能启发式算法求解折扣{0-1}背包问题(D{0-1}KP)时,为提升求解效率和求解质量,需采用某种修复与优化策略将非正常编码个体转换为符合解约束条件的编码个体。在引入项集价值密度概念基础上,以粒子群算法(PSO)为例,提出一组基于项集的... 群智能启发式算法求解折扣{0-1}背包问题(D{0-1}KP)时,为提升求解效率和求解质量,需采用某种修复与优化策略将非正常编码个体转换为符合解约束条件的编码个体。在引入项集价值密度概念基础上,以粒子群算法(PSO)为例,提出一组基于项集的贪婪修复与优化方法(group greedy repair and optimization algorithm,GGROA),并进一步构造PSO-GGRDKP算法(PSO based GGROA for solving D{0-1}KP)以探究GGROA方法的可行性和性能。PSO-NGROADKP(PSO based NGROA for solving D{0-1}KP)和PSO-GRDKP(PSO based GROA for solving D{0-1}KP)是基于项贪心修复与优化方法的粒子群算法。在D{0-1}KP标准数据集的实验结果表明:与PSO-NGROADKP和PSO-GRDKP相比,PSO-GGRDKP算法的解误差率略高,但算法时间性能分别提升了13.8%、12.9%。 展开更多
关键词 折扣{0-1}背包问题 启发式算法 粒子群算法 非正常编码个体 贪心修复与优化 d{0-1}KP数据
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部